CppNoddy  0.92
Loading...
Searching...
No Matches
Classes | Namespaces
PDE_IBVP.h File Reference

A specification of a class for an $ n^{th} $-order IBVP of the form. More...

#include <DenseVector.h>
#include <DenseMatrix.h>
#include <Equation_2matrix.h>
#include <Residual_with_coords.h>
#include <OneD_Node_Mesh.h>
#include <Uncopyable.h>
#include <Timer.h>

Go to the source code of this file.

Classes

class  CppNoddy::PDE_IBVP< _Type >
 A templated object for real/complex vector system of unsteady equations. More...
 

Namespaces

namespace  CppNoddy
 A collection of OO numerical routines aimed at simple (typical) applied problems in continuum mechanics.
 

Detailed Description

A specification of a class for an $ n^{th} $-order IBVP of the form.

\[ M_1( {\underline f}(y,t), y, t )\cdot {\underline f}_t (y,t)+ M_0( {\underline f}(y,t), y, t ) \cdot {\underline f}_y (y,t) = {\underline R}( {\underline f}(y,t), y, t )\,, \]

subject to $ n $ conditions defined at $ y = y_{left} $ and $ y_{right} $ for some components of $ {\underline f}(y) $. Here $ M_{0,1} $ are matrices. The solution at the new time step $ t+\Delta t $ is

\[ {\underline f}^{new} = {\underline F} + {\underline g} \]

where $ {\underline F} $ is the current guess at the solution and $ {\underline g} $ is the linearised correction. The solution at the previous time $ t $ is

\[ {\underline f}^{old} = {\underline O} \]

A Crank-Nicolson method is employed with the linearised problem at the mid-time point $ t + \Delta t /2 $ being:

\[ \frac{2}{\Delta t} M_1 \cdot {\underline g } + 2 M_0 \cdot {\underline g}_y - J \cdot {\underline g} + J_2 \cdot \frac{\underline F - \underline O}{\Delta t} \cdot {\underline g} + J_1 \cdot \frac{\underline F_y + \underline O_y}{2} \cdot {\underline g} = 2 {\underline R} - \frac{2}{\Delta t} M_2 \cdot ( {\underline F} - {\underline O} ) -  M_1 \cdot ( {\underline F}_y + {\underline O}_y )\]

Where $ M_{0,1}, J, J_{1,2}, R $ are evaluated at the mid-time step with arguments $ \left ( \frac{\underline F + \underline O}{2}, y, t + \frac{\Delta t}{2} \right ) $, with $ J_{1,2} $ denoting the Jacobian of the matrices $ \partial {(M_{0,1})}_{ij} / \partial f_k $. This problem is solved by second-order central differencing at the spatial ( $ y $) inter-node mid points.

Definition in file PDE_IBVP.h.

© 2012

R.E. Hewitt