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Three-dimensional extensions to Je!ery–Hamel #ow
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Abstract

We consider two viscous #ows, both of which are in a class of three-dimensional #ow states that are closely related
to the classical Je!ery–Hamel solutions. In the 4rst con4guration, we consider a #ow between two planes, intersecting
at an angle �, and driven by a line-source-like solution in the neighbourhood of the apex of intersection (just as in
classical, two-dimensional, Je!ery–Hamel #ow). However, in addition we allow for a #ow in the direction of the line of
intersection of the planes (in order to capture the broader class of three-dimensional solutions). In this #ow, two solution
scenarios are possible; the 4rst of these originates as a bifurcation from Je!ery–Hamel #ow, whilst the second scenario
describes a radial velocity of the classical Je!ery–Hamel form (also with a zero azimuthal velocity component), but with
an axial velocity determined from the radial #ow. Both of these solutions are exact within the Navier–Stokes framework.
In the second con4guration, we consider the high Reynolds number, three-dimensional #ow in a diverging channel, with
(generally) non-straight walls close to a plane of symmetry, and driven by a pressure gradient. Similarity solutions are
found, and a connection with Je!ery–Hamel #ows is established for the particular case of a #ow through straight (but
non-parallel) channel walls, and again, additional three-dimensional solutions are found. One member of this general class
(corresponding to the #ow through a straight-walled channel, driven by linearly increasing pressure in both the axial and
cross-channel directions), leads to a further family of exact Navier–Stokes solutions. c© 2001 Published by The Japan
Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.

Keywords: Je!ery–Hamel; Exact Navier–Stokes solutions; Three-dimensional boundary layers

1. Introduction

Discussion of the two-dimensional #ow of a viscous, incompressible #uid between two plane walls
separated by an angle 2� and driven by a line-source at the apex dates back to the work of Je!ery
(1915) and Hamel (1916). Writing the radial velocity component, u, in the form MG(#)=r, where r
denotes the radial distance from the source, � the kinematic viscosity of the #uid, # is the azimuthal
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Fig. 1. The geometry and coordinate system for the #ow between two inclined planes. There is a line-source-like forcing
at the intersection of the two planes, and the #ow is assumed to have a plane of symmetry at z=0.

angle (the plane walls lying along #=− � and �) and M denotes the mass #ux between the walls,
i.e. (Fig. 1),

M =
1
2

∫ �

−�
u(#)r d#: (1)

This leads to the governing equation,

G### + 2RGG# + 4G# =0; (2)

where the Reynolds number R=M=�. This formulation is exact within the Navier–Stokes framework;
the azimuthal velocity component is zero in this case and the no-slip boundary conditions applied
at each plane wall reduce to

G(−�)=G(�)= 0: (3)

It is often more convenient to introduce G(#)=F ′(’)=�, where ’=#=�, resulting in

F (iv) + 2R�F ′F ′′ + 4�2F ′′ =0 (4)

with boundary conditions F(±1)=F ′(±1)=0 on ’=± 1. Thus, we have a fourth-order boundary-
value problem, in which the wall angle (�) and the net radial mass #ux (R) can be independently
speci4ed and a solution then sought to (4).

The richness of this problem was 4rst fully realized by Rosenhead (1940). There can be an
in4nity of solutions, depending on the exact choice of apex angle and Reynolds number (i.e., the
mass #ux). A full classi4cation of solutions has been given by Fraenkel (1962); below we give just
a brief overview of the more relevant details.

Each solution to this system can be uniquely identi4ed by (for example) a point in the four-
dimensional parameter space

(�; R; F ′′(−1); F ′′′(−1));

however, some insight can be gained by identifying limiting boundaries in the (�-R) plane. It is
clear that starting at some low-R solution and a 4xed angle �, one may continue a solution to R¿ 0
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Fig. 2. A schematic of the boundaries in �-R space along which the Je!ery–Hamel solutions possess special properties
(after Fraenkel, 1962 and Banks et al., 1988).

(net out-#ow) or R¡ 0 (net in-#ow). In fact, the solutions to (4) can be approached analytically
via Jacobian elliptic functions. However, the problem is nonlinear, and non-uniqueness of solutions
at 4xed wall angle and Reynolds number is common. In this regard one may be interested in those
points in the (�; R) plane that correspond to bifurcations of the Je!ery–Hamel states. These boundaries
are shown schematically in Fig. 2, a full description of which is not given here. Nevertheless, some
of the properties that the solutions possess on the boundaries presented in Fig. 2 are useful in this
work.

The boundary B1 and the R-axis enclose a region in which solutions of type I; II1 are available
(as denoted by Fraenkel, 1962); these states correspond to a symmetric #ow with a single velocity
maximum, and no reverse #ow. The most signi4cant reverse #ow solution is denoted by II2, which
exists between boundaries B2 and B1. These states are symmetric about the mid-plane with a single
maximum and a reverse-#ow region near each wall.

The boundaries B2 and B−1 correspond to a pitchfork bifurcation leading to a further pair of
states related by the transformation # → −#. The bifurcation is straightforward to describe (see
Banks et al., 1988); since the equation is invariant under rotations, given any solution G(#), we can
construct a further solution in the form G(# + �#)=G1(#) + �G′(#) + · · ·, therefore a bifurcated
state that loses the mid-plane symmetry can be constructed for those symmetric Je!ery–Hamel #ows
that satisfy G′(0)= 0. It is this property that is possessed by the states along the boundary B2. We
note that this boundary corresponds to solutions for which R=0 (no net radial mass #ux) when
�= �=2.

The boundaries B3 and B−2 denote a fold in the solution surface beyond which a sub-set of
solutions cannot be continued. The point marked by the open circle in Fig. 2 is a cusp and is
formed by the projection of the tangent planes of the fold onto the (�-R) plane. Obviously, this
feature is simply a pitchfork bifurcation unfolded under two control parameters (see, for example,
Benjamin, 1978). The point denoted by the 4lled circle in Fig. 2 corresponds to a transcritical
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bifurcation found at �= �1�, where �1 ≈ 0:74135. As we shall show, this latter point is of some
signi4cance in the development of three-dimensional states.

In this paper we consider two classes of #ow, both of which may be regarded as three-dimensional
counterparts (or otherwise closely related) to classical Je!ery–Hamel #ows. In Section 2, we consider
the #ow in the sector formed by two intersecting planes, akin to the Je!ery–Hamel problem, but
in addition to the radial #ow, we also allow a cross#ow which increases linearly in magnitude
in the direction of the line of intersection of the two planes. Two distinct scenarios appear to be
possible in this case. In the 4rst (Section 2.1), three-dimensional solutions bifurcate from one of
the classical Je!ery–Hamel solutions at a critical wall angle and radial mass #ux. In the second
(Section 2.2) the #ow in the radial direction is a Je!ery–Hamel #ow, but with an associated #ow
in the direction of the line of intersection of the two planes. Both of these solutions are exact
within the Navier–Stokes framework. In Section 3, we consider the #ow down a diverging channel,
close to a line of symmetry (perpendicular to the channel walls); in this case a pressure gradient
drives the #uid motion. In general, these #ows involve a high Reynolds number=boundary-layer
approximation, but in the special case of straight diverging channel walls, the #ow may be regarded
as a further three-dimensional extension to Je!ery–Hamel #ow; indeed, one set of solutions in
this case corresponds to Je!ery–Hamel #ow in the limit of zero corner angle. Both symmetric and
asymmetric three-dimensional solutions (with respect to the plane midway between the channel walls)
are found. Finally, our conclusions are given in Section 4.

2. Flow between intersecting planes

Consider a cylindrical-polar coordinate system (r; #; z), centred on two intersecting, semi-in4nite
planes inclined at an angle � to each other, with a plane of symmetry for the #ow at z=0; the
geometry of the #ow is shown in Fig. 1. In this coordinate system, r denotes the (radial) distance to
the corner apex formed by the intersection of the planes and # denotes the corresponding polar angle
(the planar walls lying along #=− � and �). We denote the corresponding velocity components as
(u; v; w) and the pressure as p; with � and � taken to be the constant density and kinematic viscosity
of the #uid, respectively. We can de4ne a Reynolds number, as before, using R=M=�, where M is
the radial mass transport.

Below we consider two distinct scenarios to this #ow, both of which are exact within the Navier–
Stokes framework, and both of which have connections with Je!ery–Hamel #ow.

2.1. The case of linearly increasing cross2ow

The 4rst case we consider is that in which the w velocity component grows linearly in the
cross#ow (z) direction. ‘Sensible’ balancing of terms then determines the radial dependency of the
other terms, speci4cally yielding

u= �U (#)=r; (5a)

v= �V (#)=r; (5b)

w=2�zW (#)=r2; (5c)
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which upon substitution into the Navier–Stokes equations leads to the following:

V# + 2W =0; (6a)

W## + 4W =2W 2 − 2UW + VW#; (6b)

U### + 4U# =U#V# − 2UU# + VU##; (6c)

V# # # + 4V# =− V#V# − 2UV# + VV##: (6d)

The corresponding boundary conditions are

W (−�)=V (−�)=U (−�)= 0; W (�)=V (�)=U (�)= 0: (6e)

We note from the form of this governing system that, unlike the classical Je!ery–Hamel #ow, the
radial mass #ux across a surface of 4xed r cannot be speci4ed arbitrarily. Eqs. (6) can be shown to
form a sixth-order system with six boundary conditions. One might view this class of exact solution
as a special case of a more generally applicable (but not necessarily self-similar) solution. It is for
this reason that we choose to nondimensionalize using the kinematic viscosity in (5) rather than the
mass #ux which is unknown a priori.

From Eq. (6a) together with (6e), we see that we must have
∫ �
−� W d#=0, and therefore there is

no net mass #ux in the z direction.
As it stands, system (6) is exact; it is possible to extend this form somewhat, for example with

the inclusion of additional terms, including other inverse powers of r, representing a r�1 expansion.
However, the exactness of the formulation is lost in such approaches, although it is still possible to
develop forms consistent with a high Reynolds number theory.

We note that, if W ≡ V ≡ 0, then (5) represents Je!ery–Hamel #ow since we simply have a
two-dimensional #ow along a channel with non-parallel, straight walls, and this is con4rmed by
writing U =G to obtain (2).

System (6) was solved using a fourth-order Runge–Kutta method (independent checks on the
accuracy of the scheme were made using the continuation package AUTO) over the interval #=−�
to � (or 0 for the calculation of symmetric states), although for W �≡ 0, all numerical solutions were
found to be symmetric about #=0.

The behaviour of the 4rst four solution branches for varying � is shown in Fig. 3. The branch 2
solution shown in the 4gure has four sign changes in the pro4le of W , while branches 3 and 4 have
six and eight sign changes, respectively; for comparison the primary (branch 1) solution has just two
sign changes in the pro4le of W and is shown as a solid line. It seems from these results that for
any even number of sign changes there are an in4nite number of solutions, each with progressively
larger values of |W#(−�)|. The derivatives of the variables at the wall are in general very large (see
Fig. 3), but the results were carefully checked both by varying the spatial step-size in the numerical
method and by comparing the results with calculations performed using AUTO. These derivatives
become much larger still for even higher-order solutions, suggesting that any numerical technique
used in their calculation would require high resolution. In Fig. 4, we show pro4les of the primary
solution branch at a wall angle of �= �=4. This indicates that the radial #ow is non-unidirectional,
and is (as indeed were all solutions found of this type) symmetrical with respect to #=0; the
same remarks may be made concerning the cross#ow, and so by implication the azimuthal velocity
component is antisymmetric about this line.
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Fig. 3. Variation of �3W0#(−�) with � for the 4rst four three-dimensional solution branches. The 4lled circle denotes the
bifurcation of the primary branch from a classical Je!ery–Hamel solution for which W ≡ 0.

These solutions can be viewed as three-dimensional counterparts of the Je!ery–Hamel solutions
with the primary solution branch arising from a bifurcation of one of the Je!ery–Hamel states at a
critical wall angle and radial mass #ux, as described below.

2.1.1. A bifurcation from Je6ery–Hamel 2ow
It is easy to show that the governing equations can be rewritten in the form

N+{U}=0; (7a)

N−{V}=0; (7b)

W =− DV=2; (7c)

where N± is the operator

N± ≡ D3 + 4D + 2UD + VD2 ± V ′D; (7d)

with D ≡ d=d#. The boundary conditions are simply

U =DV =V =0; on #=± �: (7e)

We may transform the system further by introducing

U =RF ′(’)=�; V =H (’)=�; (8a)

’=#=�: (8b)
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Fig. 4. Pro4les of U; V and W for the primary solution located at �= �=4.
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Fig. 5. The Je!ery–Hamel solution branches near the transcritical bifurcation at �= �1�.

Here, F ′ is related to the radial velocity component, while H is associated with the azimuthal velocity
and the axial #ow is proportional to H ′. The governing system is therefore

F (iv) + 2R�F ′F ′′ + 4�2F ′′ − HF ′′′ − H ′F ′′ =0; (9a)

H ′′′ + 2R�F ′H ′ + 4�2H ′ − HH ′′ + H ′H ′ =0; (9b)

where F(±1)= ± 1, F ′(±1)=H (±1)=H ′(±1)=0. Again, here the Reynolds number is R=M=�,
where M is the radial mass #ux.

We note that if there is no axial component of velocity, H =0, then the equations reduce to those
discussed by Fraenkel (1962) and Banks et al. (1988) (and as given by (4)). In this case we obtain a
fourth-order equation for F(’), with four boundary conditions, and the wall angle (�) and Reynolds
number (R, which is essentially a measure of radial mass #ux) can be speci4ed independently with
the solution classi4ed according to Fig. 2. However, one cannot impose a self-similar axial #ow at
arbitrary points in the (�-R) parameter space. This can be clearly seen from the form of (9), since
it e!ectively corresponds to a nonlinear eigenvalue problem for the Reynolds number given a 4xed
�. Nevertheless, we again expect there to be a locus of points in the (�-R) plane along which these
three-dimensional extensions to Je!ery–Hamel #ow exist.

As shown in Fig. 2, there is a boundary B2 in the (�-R) plane along which a fold in the
classical Je!ery–Hamel solutions exists. Furthermore, there is a point on this boundary denoted
by the 4lled-circle symbol, which indicates the location of a transcritical bifurcation (at �= �1�,
R ≈ 0:29). It is at this location that the extension to Je!ery–Hamel #ow can be derived as a weakly
three-dimensional correction to a leading-order #ow of Je!ery–Hamel type. In Fig. 5, we show
the Je!ery–Hamel solution branches at 4xed values of � in the neighbourhood of the transcritical
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bifurcation. As may be expected, � �= �1� acts as an imperfection leading to the appearance of fold
points if � − �1�¡ 0, and a region exists in which no neighbouring states can be found as the
saddle-node points separate.

To describe the appearance of the three-dimensional solution we can introduce an expansion of
the form

F =Ff (’) + �1=2AF∗
1 (’) + �F2(’) + �3=2F3(’) + · · · ; (10a)

H = �BH ∗
2 (’) + �3=2H3(’) + �2H4(’) + · · · ; (10b)

R=R0 + �; (10c)

�= �f (R0) + �[�′f (R0) + �1] + · · · : (10d)

Here the subscript f at leading order is used to indicate that this state is the solution on the fold
boundary B2, and the axial #ow is of O(�), which is the perturbation to the mass-#ux value,
R0, determined at the fold. The constants A and B are amplitude constants to be determined from
the expansion scheme applied near to the bifurcation point. As can be seen from the analysis of
Appendix A, this expansion is able to capture the description of the solutions along the boundary
B2, the transcritical bifurcation and the appearance of the three-dimensional state.

From the solvability conditions required at third order in the expansion scheme, we determine the
amplitude equations

B− c1�1 − c2A2 = 0; (11)

AB=0; (12)

B2 − c3�1B− c4B=0: (13)

Here, the constants cj can be determined in terms of integrals of the functions R̂j (see Appendix A)
and the adjoints of the homogeneous equations.

One set of possible states in the neighbourhood of the bifurcation are such that

B=0 and A2 =
c1
c2
�1; (14)

corresponding to the two classical Je!ery–Hamel solutions near the fold, which can be developed at
any value of R0 with �= �f (R0) and perturbed by any value for |�1|, but only in one direction (i.e.,
such that c1�1=c2¿ 0).

There is also a weakly three-dimensional solution such that

A=0; B= c1�1 and �1 =
c4

c1 − c3
(15)

and this latter solution only exists as a perturbation about the point at which �′f (R0)= 0, that is,
at the transcritical bifurcation of the classical Je!ery–Hamel solutions. Furthermore, we can note
that the relationship between �1 and B is caused by the inability to independently specify both the
semi-wall-angle � and the radial mass #ux, R, for the three-dimensional solutions; there is no such
restriction in the case B=0.
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We also note that the normal form of the transcritical bifurcation (as shown in Fig. 5) arises when
B=0 and �1 = 0, in which case A=0 is the only solution and a further amplitude constant A2 is
introduced at higher order which then satis4es an amplitude equation of the form A2

2 −d1A2 = 0. On
writing �= �f + �2�2 + · · · the bifurcation can be made imperfect, resulting in the amplitude equation
A2

2 + d1A2 + d3�2 = 0, where dj are constants. Solutions of the type shown in Fig. 5 are then easily
found. Regions with no solutions are obtained since real solutions to the quadratic amplitude equation
only exist for a range of �2.

2.2. The case of no tangential 2ow

In this case, assuming there to be no #ow in the # direction leads to the following forms for the
#ow components

u= �G(#)=r; (16a)

v=0; (16b)

w= �W (#)=r; (16c)

Substitution of these, into the full Navier–Stokes equations indicates these to be satis4ed exactly,
provided

W## =− (U + 1)W; (17a)

G### + 4G# + 2GG# =0 (17b)

with W (±�)=G(±�)= 0. Note that Eq. (17a) is linear in W and so (unlike in Section 2.1) we
may scale W by any constant and still have an acceptable solution. To remove this arbitrariness we
may make a choice of normalization, for example max|W |=1. From (17b) we see that there is a
Je!ery–Hamel #ow in the radial direction (as can be seen by comparison with Eq. (2)), with an
associated #ow in the axial direction, but no tangential #ow in the cross#ow plane (again, in line
with classical Je!ery–Hamel #ow).

Since the equation for W is linear and second order with a no-slip condition applied at both walls,
solutions of this form essentially provide an eigenvalue problem of the form

F(�; R;G(#))= 0: (18)

Thus, a superimposed axial #ow W can be obtained only for a subset of the Je!ery–Hamel solutions
that satisfy the additional constraint (18).

The points at which the eigenvalue problem (18) can be satis4ed can be easily determined nu-
merically. In Fig. 6, we show the values of � and R for which a solution to the eigenvalue problem
exists. As can be observed, the solution is unique for �6 �=2, at which point the Je!ery–Hamel
solution passes through boundary B2 (as discussed by Fraenkel (1962) and illustrated by Fig. 2) the
mid-plane symmetry is broken and a further pair of solutions arises. For �¿�=2 the solutions either
have a net radial in#ow (R¡ 0) or zero mass #ux in the axial direction (as noted in the 4gure, W
is antisymmetric for those states arising from R=0 at �= �=2). The 4lled squares in Fig. 6 indicate
the intersection with critical boundaries B2 and B4 (G is trivial at both points).
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Fig. 6. The points in the (�-R) plane for which a solution to the eigenvalue problem F=0 exists. Note that the appropriate
Je!ery–Hamel solution is trivial at the points denoted by the square symbols. Solid line: G and W are both symmetric
about the mid-plane. Dashed (long) line: G and W are both asymmetric about the mid-plane (obviously a pair of states
exists at these values). Dashed (short) line: G is symmetric and W is antisymmetric about the mid-plane.

It is worth noting that Banks et al. (1988) have suggested that the boundary B2 plays a crucial
role in divergent channel #ows. In particular, on the basis of a ‘spatial stability’ analysis, it was
suggested that the inlet and outlet conditions in any 4nite channel will e!ect the solution over the
entire length when the mass #ux exceeds a critical value, R2(�), which is de4ned as the value at
the boundary B2.

To conclude this section, it is perhaps worth noting that both the forms of solution studied, namely
(5) and (16), can be derived in a quite formal fashion, as performed by Stow (1999).

3. Flow in a diverging channel, close to a plane of symmetry

Here we consider a fully three-dimensional class of #ow, which is similar in some respects to
the work contained in Section 2. The #ow con4guration we consider is the #ow within a diverging
channel (as illustrated in Fig. 7), close to a plane of symmetry, taken to lie in z=0 (note the channel
is unbounded as z → ±∞). We assume that the (generally non-straight) walls of the channel lie
along y= ± 'Re−1=2x(1−n)=2; it is then useful to de4ne a scaled transverse coordinate Y =Re1=2y,
such that the channel walls then lie along Y =±'x(1−n)=2. Here, since the #ow is forced by a pressure
gradient in the x direction, we de4ne Re=U∞L=�, where U∞ is the typical velocity scale, and L
is a typical streamwise scale over which the channel width increases (or over which the pressure
changes signi4cantly), both of which are used for non-dimensionalisation purposes.

We suppose the non-dimensionalised velocity components in the (x; y; z) (non-dimensional) di-
rections are (u; v; w), respectively (here the use of Cartesian coordinates is more appropriate). We
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Fig. 7. The geometry for the #ow near a plane of symmetry.

now seek similarity solutions to the problem (as z → 0 and Re → ∞), for which it is necessary to
impose an applied pressure (driving the #ow) of the form

P= x2n OP0 + z2x2n−2 OP1 + O(z4) (19)

and we shall assume implicitly that |z|�x.
Correspondingly, we seek a (similarity-type) solution of the following form:

u= xnU0(-) + O(z2); (20a)

v=
1√
2
Re−1=2x(n−1)=2[(1− n)-U0(-)− .0(-)] + O(z2); (20b)

w= xn−1zW0(-)= 1
2x

n−1z [(1− n)U0(-)−/0(-)] + O(z3); (20c)

where

-=Y=x(1−n)=2: (21)

This form of solution corresponds to a boundary-layer version (written in a Cartesian form) of that
described in Section 2.1. Substitution of this form of solution into the three-dimensional boundary-
layer equations (see Dhanak and Duck, 1997), leads to the following leading-order equations:

2U0 =.0- +/0; (22a)

U0-- + OP=2nU 2
0 − .0U0-; (22b)

00 =/0-; (22c)

00-- − 2(1 − n2)U0U0- +00-.0 +/000 + 2U000 = 0: (22d)

The boundary conditions are

U0(±')=.0(±')=/0(±')= 0 (22e)

and for symmetric #ows we also have that

U0-(0)=.0(0)=00(0)= 0: (22f)
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In this formulation we have made the substitution 2n OP0 = − OP and note that ' (the domain size)
is a parameter of the problem. However, it is more convenient instead to set ' equal to unity and
to parameterize the solutions with OP; for consistency, this quantity is independent of -, whilst OP1

will vary across the cross section. This can be achieved using the following re-scaling (which is
equivalent to changing our de4nition of U∞):

-new = '−1-; OPnew = '4 OP; (23a)

.new
0 = '.0; U new

0 = '2U0; (23b)

/new
0 = '2/0; 0new

0 = '200 (23c)

and in our subsequent analysis we shall assume '=1.
Two values of n have particular signi4cance. Firstly, when n=1 the nozzle has #at, parallel

walls (but note that Poiseuille #ow is not a solution here because of the assumed form of the
pressure gradient which in this case is linear in x). For this case the above results are correct even
for 8nite Reynolds numbers since the similarity form removes Re from the equations, and hence
solutions to (22a)–(22d) give exact Navier–Stokes solutions, assuming there to be no O(z4) and
higher terms in (19). (This is the only value of n for which this occurs; for all other values we must
assume that Re�1 and that |z|�x). Secondly, for n= − 1 the walls are straight but non-parallel
(diverging). Hence, the basic geometry of the problem (if we ignore the z dependency) is similar
to that for Je!ery–Hamel #ow although here we assume the pressure is of the form x−2 instead of
r−2 (where r is the distance from x=y=0). However, as the corner angle tends to zero for the
Je!ery–Hamel problem, r → x and hence (to leading order) Je!ery–Hamel solutions for this limit
are two-dimensional solutions to the present problem (in which case we have that the O(z2) and
higher terms in (19) are clearly zero). This is con4rmed by the fact that if we seek two-dimensional
solutions to (22a)–(22d) with n=−1 (by setting /0 ≡ 2U0, .0 ≡ 0) we obtain equations equivalent
to those for the Je!ery–Hamel problem.

3.1. Numerical results

Numerical solutions to system (22a)–(22d) were found using a fourth-order Runge–Kutta method,
integrating from -=− 1 to 0 (for symmetric #ows) or -=1 (for non-symmetric #ows).

3.1.1. The case n=0
Fig. 8 shows the variation of U0-(−1); 00(−1); 00-(−1) and W0-(−1) with OP for n=0, all the

solutions are symmetric. With OP=0, that is, no pressure gradient, we have only the trivial solution
U0 ≡ .0 ≡ /0 ≡ 0. All other solutions have W0 �≡ 0 and hence are inherently three dimensional in
nature. For OP¿ 0 we have a solution branch emanating from this trivial solution which has a limit
point at OP ≈ 6:2341, after which the branch becomes singular as OP → 0+; the asymptotic form of
the solution in this limit is non-trivial and described in Appendix B. For OP¡ 0 the solution branch
continues from the trivial solution to another limit point at OP ≈ −23:534 and beyond this point
the solution becomes singular. For OP¿ 0 the solutions represent pure out-#ow (i.e., U0¿ 0 for all
-∈ [− 1;+1]), and pure in-#ow for OP¡ 0. This correlation does not hold in general when n �=0 as
we shall discuss below.
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Fig. 8. Variation of U0-(−1), 00(−1); 00-(−1) and W0-(−1) with OP for n=0.

3.1.2. The case n=1: plane parallel walls
As noted already, in this case our solutions may be regarded as exact within the Navier–Stokes

framework. Fig. 9 shows the computed results for n=1; all the solutions were found to be symmet-
ric and three dimensional. For large OP there is just one solution; this consists of an out-#ow near
the walls but an in-#ow at the centre. As OP is decreased, U0-(−1) becomes zero at OP ≈ 20:147,
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Fig. 9. Variation of U0-(−1), 00(−1), 00-(−1) and W0-(−1) with OP for n=1.

after which the solution consists purely of in-#ow, and then the branch passes through a non-trivial
solution at OP=0. The streamwise #ow continues to be directed entirely inwards for all negative OP.
As OP is increased from the trivial state, the solutions indicate a pure out-#ow. There is a second
limit point, after which the solution becomes singular as OP is decreased. The singularity occurs at
some value of OP¿ 0 (see Appendix B).

3.1.3. The case n=− 1: Je6ery–Hamel 2ows
Numerical results for the special case of n=− 1 are shown in Fig. 10. This is the only value of

n for which two-dimensional solutions have been located. In the 4gure, two-dimensional solutions
are represented by solid lines for symmetric solutions and short dashes for asymmetric solutions.
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Fig. 10. Variation of U0-(−1), 00(−1), 00-(−1) and W0-(−1) with OP for n= − 1.

As stated above these solutions are equivalent to Je!ery–Hamel solutions in the limit of zero corner
angle but singular radial mass #ux; i.e., �Q=O(1) in the notation of Fig. 2.

There are also a number of three-dimensional solution branches present, represented here by long
dashes. Firstly, a branch of symmetric solutions was found to bifurcate from the 4rst symmetric,
two-dimensional branch when OP ≈ −47:438. As OP is increased this branch becomes singular at
a negative value of OP (see Appendix B). At OP ≈ −31:979 on this branch U0-(−1)=0; for OP
below this value there is out-#ow at the centre with in-#ow near the wall, whereas for OP above
the value there is pure out-#ow. Secondly, a branch of asymmetric solutions was found to emanate
from two bifurcation points, as shown in the 4gure. As OP increases from the bifurcation point there
exists a mirror-image pair of solutions, with U0- soon becoming very large on one wall but not the
other.
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It is clear from Fig. 10 that there are three bifurcation points, at which three-dimensional states
arise from the classical two-dimensional Je!ery–Hamel solutions. The bifurcation near OP ≈ −47:438
is transcritical, with the amplitude of the three-dimensional state developing linearly with a perturba-
tion about the critical pressure gradient. We do not derive the normal form of the bifurcation since
it is straightforward and proceeds in a manner analogous to the more complicated case described in
Appendix A. The other two points shown in Fig. 10 (near OP ≈ −283:609, −17:725 are both pitchfork
bifurcations. As can be observed from the 4gure, the bifurcations occur at critical values of P̂ that
correspond to the appearance of asymmetric states to the two-dimensional Je!ery–Hamel problem;
i.e., in the neighbourhood of these bifurcation points there exist symmetric two-dimensional states
as well as weakly asymmetric two-dimensional and weakly three-dimensional states. This behaviour
is clearly seen in the asymptotic description of the critical points. Given a perturbation of the form
OP= OP0 + � we can introduce the usual description of the pitchfork bifurcation in the form:

U0 =U00 + �1=2(AU01 + BU ∗
01) + · · · ; (24)

/0 = 2U00 + �1=2(2AU01 + B/∗
01) : : : ; (25)

.0 = o(�1=2): (26)

In this expansion A denotes the amplitude of the asymmetric two-dimensional Je!ery–Hamel state,
B denotes the amplitude of the three-dimensional state, and A=B=0 corresponds to a symmetric
solution of Je!ery–Hamel type. At O(�1=2) we obtain eigenvalue problems for U01 and (U ∗

01; /
∗
01),

which act to determine the critical pressure gradient, OP0, at which the bifurcation occurs. It is
straightforward to see that the two eigenvalue problems at O(�1=2) are identical and therefore in
the neighbourhood of these points both two-dimensional asymmetric (A �=0) and three-dimensional
states (B �=0) can be found. As in Appendix A, we can continue the above expansion to higher
order to 4nd the normal form of the pitchfork bifurcation arises through solvability conditions at
O(�3=2); we do not present the details of the derivation here.

3.1.4. The case OP=0: zero pressure gradient
Figs. 9 and 10 both indicate non-trivial solutions for OP=0. For such solutions there is no pressure

gradient so that the #ow is being driven totally by its own momentum, in the same way as a jet-#ow.
In Fig. 11, we trace these solutions as n is varied. We see that the solutions at n=1 and −1 are
part of separate solution branches. For one branch, n is always positive and the solutions represent
pure in-#ow, whereas for the other branch n is negative and the solutions consist of pure out-#ow.
Both branches become singular as n → 0; we do not describe the singularity here, however, details
of the asymptotic description can be found in Stow (1999).

4. Conclusions

The non-uniqueness of the Je!ery–Hamel class of two-dimension solutions is now well known,
and over the years its solution richness has been thoroughly examined, including in more recent
times using ideas based on bifurcation theory (Sobey and Drazin, 1986). The results in this paper
add yet another dimension to the problem, and indicate that the inclusion of three-dimensionality
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Fig. 11. Variation of U0-(−1), 00(−1), 00-(−1) and W0-(−1) with n for OP=0.

permits a further broadening of #ows of this class. The exactness of the formulation, within the
framework of the Navier–Stokes equations is generally retained. The natural question to ask is
which of the various states is the most realisable, physically. Certainly, there have been a number
of serious attempts to answer this for the classical (two-dimensional) case, using arguments based
on stability theory. The diQculty of this approach, as highlighted by McAlpine and Drazin (1998),
is that it is not possible to separate variables (the procedure normally adopted in Orr–Sommerfeld
problems). An allied issue is that of the e!ect of boundaries on the problem. In the classical case,
Dennis et al. (1997) showed that end e!ects were closely linked to spatial modes. In the present
case of three-dimensional variants of the #ow, end e!ects are likely to play a further, even more
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complicated role, perhaps even determining solution selection globally; this will form the basis of
further investigation.

From a mathematical point of view, these #ows are clearly of interest, given their exactness within
the Navier–Stokes framework. From a practical point of view such #ows are likely to be of some
signi4cance in the context (for example) of duct and nozzle #ows.

Finally, Professor Philip Drazin has kindly pointed out that form (5) can be generalised to yield
a further exact form, merely by considering the #ow variables to be a function of # + c log(r=r0),
rather than just of #, where c and r0 are constants; this yields a further set of ordinary di!erential
equations, and is currently the focus of our attention.

Appendix A. Section 2.1 states: a bifurcation from Je$ery–Hamel 'ow

In the expansion procedure (10a)–(10d), at O(�0), we obtain

NJH{Ff ; �f ; R0}=0; (A.1)

where NJH indicates the nonlinear, fourth-order Je!ery–Hamel equation applied with parameters
�= �f and R=R0. The boundary conditions are simply Ff (±1)=± 1, F ′

f (±1)=0.
At O(�1=2), we obtain a linear eigenvalue problem for the fold location

LJH{F1; �f ; R0}=0: (A.2)

Here LJH denotes the operator that arises following linearization of the Je!ery–Hamel equation. This
determines the locus of the boundary B2, that is, we determine the functional relationship �f (R0).
The solution at this stage can therefore be written as

F1(’)=AF∗
1 (’); (A.3)

where A is an arbitrary (at this stage) amplitude constant.
At next order in the expansion scheme, O(�), we obtain

LH{H2; �f ; R0}=0; (A.4)

where LH is the operator,

LH ≡ D3 + 2R0�fF ′
fD

2 + 4�2
fD

2: (A.5)

There are four boundary conditions on H2(’), which are H2(±1)=H ′
2(±1)=0 on ’= ± 1. We

note, however, that (A.4) is both linear and only of third order and therefore we can only satisfy the
eigenvalue problem formed by (A.4) by making a particular choice of �f and R0. In fact, a solution
to (A.4) can be constructed from (A.2) by integrating with respect to ’ then choosing R0 such that
the constant of integration vanishes. Therefore, a solution to (A.4) exists at the point (�f ,R0), where
�′f (R0)= 0, that is, at the transcritical bifurcation of the classical solutions (as marked by the 4lled
circle in Fig. 2). In the neighbourhood of this point in parameter space, a weakly three-dimensional
solution can be constructed by the introduction of

H2(’)=BH ∗
2 (’); (A.6)

where again B is an amplitude constant that remains undetermined at this stage of the expansion.
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The equation for F2 can be simpli4ed at this order by seeking a solution in the form

F2(’)=
dFf

dR0
+ F̃2(’); (A.7)

where

LJH{F̃2; �f ; R0}=A2[2R0�fF ′
1F

′′
1 ]− B[H ∗

2 F
′′
f + H ∗′

2 F
′′
f ] + 2�1F ′

fF
′′
f : (A.8)

Clearly, for a solution to exist at this order, an orthogonality condition must be satis4ed. Nevertheless,
we continue to next order before returning to the conditions that determine the amplitude constants.
At O(�3=2), we obtain

LH{H3; �f ; R0}=ABR1(’); (A.9)

where R1(’) is a function that can be given in terms of F∗
1 and H ∗

2 . At the following order, we
obtain:

LH{H4; �f ; R0}=B2R2(’) + �1BR3(’) + BR4(’); (A.10)

where again, the functions Rj can be given in terms of functions determined at lower order in the
expansion.

The amplitude equations (11)–(13) are then determined by deriving the solvability conditions
required for solutions to exist to (A.8)–(A.10).

Appendix B. Asymptotic description of divergent channel 'ow solutions

We next present asymptotic solutions for certain of the limits described in Section 3.1. For all
the limits considered here we 4nd that U0--(0) tends to zero. Furthermore, the limits for which
U0--(0) → 0+ are all related, as are those for which U0--(0) → 0−.

B.1. Limit OP → 0+ for n=0

In order to analyse this limit we write �= OP and consider 0¡��1. To begin with we investigate
the region away from both walls and, guided by the above numerical results, we write

.0 = |log �|a.∗(-) + log | log �| O.∗
(-) + · · · ; (B.1a)

U0 =B+ · · · ; (B.1b)

/0 = |log �|a/∗(-) + · · · ; (B.1c)

00 = |log �|a0∗(-) + · · · ; (B.1d)
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where a and b are constants, with a¿ 0. (The log | log �| term in (B.1a) has been included with
hindsight, since it appears from the analysis below that this is necessary in order for there to be
proper matching with the region near -=− 1). Substituting this expansion into the main system of
equations (22a)–(22d) we 4nd that

/∗ =− .∗
- ; (B.2a)

0∗ =− .∗
--; (B.2b)

.∗
--.

∗ − .∗;2
- = c (B.2c)

for some constant c, the equation for U0 being treated separately below. A family of solutions to
this system is

.∗ =− A sin �- (B.3)

with A¿ 0 (suggested by the pro4les of .0 from numerical solutions).
Full details of the analysis may be found in Stow (1999), but the next important point is the

existence of a region near -= − 1, of thickness O(|log �|−a=2), which when matched with the - +
1=O(1) region leads us to the conclusion that

a=1; A= �
2 : (B.4)

A comparison of the above asymptotic results with results obtained numerically is shown in Stow
(1999) and indicates good agreement between the two approaches.

Numerical solutions in the limit n → 0− for OP=0 were found to be similar to those for the limit
OP → 0+ with n=0, in particular, the value U0(0) appears to be tending to the same 4nite limit
(denoted by B above). Note that in Section B:1, U0--(0)= − �, whereas here U0--(0) → 2nB2. In
fact, if we write n=− (1=2B2)�, the (4rst-order) asymptotic solution above applies here also. To test
this connection numerically, the same variables as in above were compared with “�” where here we
take �=− 2nU0(0)2 since B is not known accurately; the results con4rmed the connection between
two limits.

B.2. Limit OP → 2nB2 for 8xed (nonzero) n

We now consider the singularity found when varying OP for n=1 (see Fig. 9), as well as the
singularity that occurs in the three-dimensional symmetric solution branch for n=− 1 (see Fig. 10).
As stated above, these two singularities occur at 4nite non-zero values of OP. It was found that the
numerical solutions for both cases were similar to those in Section B.1, in particular, U0(0) tends
to the constant B. Also U0--(0) was found to tend to zero (from below), suggesting a singularity
occurs as OP → 2nB2. This was also found to be the case for other values of n, implying that there
is a family of singularities for which OP → 2nB2. It was found that OP tended to this limit from above
when n¿ 0, and from below when n¡ 0. Furthermore, it appears that the asymptotic solution of
Section B.1 applies again, with now �= OP − 2nU0(0)2. But the relationship between OP and � is not
clear from this expression since U0(0) varies with OP. Although the value of B is not accurately
known, � must tend to zero much faster than OP tends to 2nB2, i.e., �= o( OP− 2nB2), suggesting that
log � ∼ OP − 2nB2. Numerical results (presented by Stow, 1999) con4rm the accuracy of the above.
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