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Abstract

We consider the �ow of a viscous, incompressible �uid contained between two parallel, porous walls. The
�ow is driven by a spatially uniform injection/suction of �uid through the bounding walls. We extend the
solution structure of previous investigations to a more general three-dimensional stagnation-point form which
can capture a whole range of phenomena in a single class of states. In particular, we show that this form of
solution contains states previously discussed under more restrictive assumptions on the �ow 6eld. We show
that a range of two- and three-dimensional states exist, together with symmetry-broken solutions and periodic
states. We discuss the stability of these states and relate the previous results of Drazin, Banks, Zaturska and
co-workers to those of Goldshtik and Javorsky on the “bifurcation to swirl” and of Hewitt and Duck on
non-axisymmetric von K=arm=an �ows.
c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.
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1. Introduction

The self-similar �ow of a viscous, incompressible �uid driven by wall transpiration in a channel
with parallel walls has been considered by many authors in recent years. Berman (1953) 6rst posed
a steady non-dimensional similarity form for the velocity 6eld:

u(x; y; z; t) = (xU (z; t); W (z; t))T (1)

under the assumption of a mid-plane symmetry in the domain z ∈ [−1; 1], with x a coordinate parallel
to the channel walls. Here U is a similarity component in the x-direction and W is the component
perpendicular to the bounding planes. The boundary conditions are those of no-slip U (±1) = 0 and
uniform transpiration, with W (±1) =±1 for suction and W (±1) =∓1 for injection.
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Berman (1953) gave the corresponding ordinary-diJerential reduction of the Navier–Stokes equa-
tions for this form of solution. The governing fourth-order equation is an exact reduction of the
Navier–Stokes system and contains a single parameter, Re, which is a Reynolds number based on
the suction/injection rate at the channel walls. Many authors have since extended the initial low
Reynolds number series solutions of Berman.
Of particular relevance here are the sequence of papers by Zaturska et al. (1988), Watson

et al. (1990) and Taylor et al. (1991). 1 The 6rst of these papers reconsidered the driven prob-
lem to include unsteady eJects and showed that the primary symmetric branch loses stability to
perturbations that break the mid-plane symmetry. Furthermore, it was shown that periodic states
arise followed by a Lorenz-like transition to chaotic �ows at higher suction/injection Reynolds num-
bers. The second paper in this sequence allowed for the combined eJects of both transpiration and
an accelerating wall motion (i.e., U (±1) = ±Ue) via the inclusion of an additional parameter, Ue,
which represents the relative importance of suction and wall motion. The numerical results con-
centrated primarily on the case in which the transpiration was absent, showing that chaotic states
arise through the mechanism of a period-doubling cascade. In the last of this sequence of papers,
the original Berman �ow was reconsidered (once again in the absence of any wall motion) with an
extension towards three-dimensionality with solutions of the form

u(x; y; z; t) = (xU (z; t); yV (z; t); W (z; t))T: (2)

Note that (2) encompasses the classical stagnation-point �ows of Hiemenz (1911) and Howarth
(1934) (and the axisymmetric analogue of Homann, 1936).
At 6xed Reynolds number, the solution structure is spanned by a single parameter, �, which

essentially measures the �ow’s three-dimensionality. Two particular values of � are of signi6cance:
�=0 corresponding to an axially symmetric radial �ow (of which we shall discuss more later) and
�=1 for which solutions of Berman-type form a subset of possible states. The exact nature of � is
discussed later in our formulation, since we shall adopt the same notation in our current work.
Further developments of this class of �ow have been provided by Cox and King (1997), and Cox

(1991) who demonstrated that the chaotic behaviour 6rst described by Zaturska et al. (1988) was
extremely sensitive to any asymmetry in the wall conditions, i.e., when the structure was unfolded
with a small diJerence in the suction/injection rates at each boundary. More recently, Cox (2002)
has considered three-dimensional extensions of the form presented by Taylor et al. (1991) in the case
of one porous boundary and one impermeable boundary, together with �uid injection (corresponding
to a �oating disk on an air table). In this work, it was shown that (perhaps unsurprisingly given the
results of Taylor et al. and the boundary-layer formulations of Davey and Scho6eld, 1967 and Hewitt
et al., 2002) three-dimensional states are again possible as alternatives to the axisymmetric �ows.
The origin of these three-dimensional solutions and their development at low injection Reynolds
numbers was not clari6ed, and we shall add to these results as a consequence of this paper.
It is perhaps worth noting that all the �ow states mentioned above are “exact solutions” in the

sense that numerical solutions of the resulting ordinary-diJerential system satisfy the Navier–Stokes
system without approximation.

1 Philip Drazin was a co-author of each investigation.
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1.1. Related exact solutions

Although the states described above are provided in a Cartesian framework, the corresponding
axisymmetric solutions have been well studied. In a cylindrical polar coordinate system (r; �; z), the
class of non-dimensional von K=arm=an solutions exists

u(r; �; z) = (rÛ (�; z; t); rV̂ (�; z; t); Ŵ (�; z; t))T (3)

in a domain z ∈ [− 1; 1].
As was observed by Hewitt and Duck (2000) and similarly by Hall et al. (1992) in a related

context, for the similarity form (3) to be an exact reduction of the Navier–Stokes system one requires
that the components either be independent of the azimuthal coordinate �, or of the special form

Û (�; z; t) = Ũ (z; t) + �(z; t)cos(2�+S); (4a)

V̂ (�; z; t) = Ṽ (z; t)− �(z; t)sin(2�+S); (4b)

Ŵ (�; z; t) = W̃ (z; t); (4c)

where � is a constant. The connection between this latter exact, non-axisymmetric solution and the
Cartesian description given above will be highlighted again later, but has already been discussed in
the semi-in6nite domain by Hall et al. (1992).
Descriptions of these states usually involve the use of impermeable rotating boundaries (the

“rotating disk” con6guration) but, given the form of (4c), are equally applicable to �ows between
uniformly porous boundaries in the absence of a forced swirl. Interestingly, the paper of Goldshtik
and Javorsky (1989) (as part of a larger sequence regarding the phenomena of the generation of
swirl) has shown that even without forcing rotation at the boundaries, swirl can be generated in the
�ow through a bifurcation at a critical rate of withdrawal of �uid through the bounding walls.
In the context of solution (2) above, it is clear that the swirl-free axisymmetric von K=arm=an

states (i.e., Ṽ ≡ � ≡ 0 in (4)) correspond to the case in which U = V in the notation of (2),
and therefore Ũ =U = V in (4). Furthermore, on resolving the non-axisymmetric state (4) into the
Cartesian formulation one 6nds that the corresponding �ow 6eld (to within an arbitrary rotation;
here we take �= 0) is

u(x; y; z; t) =



x[Ũ (z; t) + �(z; t)]− yṼ (z; t)
xṼ (z; t) + y[Ũ (z; t)− �(z; t)]

W̃ (z; t)


 : (5)

2. Formulation

We consider the �ow of an incompressible �uid of kinematic viscosity � con6ned between two
parallel porous planes separated by a distance 2h and driven by a suction/injection velocity �w
through the bounding walls.
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Given the above descriptions of previous solution types to the porous channel �ow problem, we
see that the work of Drazin, Banks and Zaturska can be further extended to solutions of the form

u(x; y; z; t) =



xfz(z; t) + y F(z; t)=

√
c

x�F(z; t)
√
c + ygz(z; t)

−f(z; t)− g(z; t)


 (6a)

for any positive constant c with � = ±1, where {x; y; z} is the Cartesian coordinate system, non-
dimensionalised with the natural lengthscale h and u is the velocity 6eld non-dimensionalised with
respect to the suction/injection rate at the z = −1 boundary. In the notation of (6), subscripts are
used to denote diJerentiation with respect to the subscript variable. Here the dimensionless pressure
distribution is of the form

p(x; y; z; t) = K1(t)
x2

2
+ K2(t)

y2

2
+ Q(z; t); (6b)

where K1;2(t) and Q(z; t) are pressure functions.
Substitution of (6) into the Navier–Stokes system and diJerentiation to eliminate K1;2(t) provides

a governing system in the form

fzzt + (fz − gz)fzz − (f + g)fzzz + 2�FFz = 1
Re
fzzzz; (7a)

gzzt + (gz − fz)gzz − (f + g)gzzz + 2�FFz = 1
Re
gzzzz; (7b)

Ft + fzF + gzF − (f + g)Fz = 1
Re
Fzz: (7c)

Here, Re= �wh=� is the Reynolds number based on the suction/injection velocity and the boundary
conditions to be applied are no-slip

fz(±1; t) = 0; gz(±1; t) = 0; F(±1; t) = 0 (8a)

and permeability of the bounding walls

f(−1; t) =± 1
2 (1 + �); g(−1; t) =± 1

2 (1− �); (8b)

f(1; t) =∓ �
2
(1 + �); g(1; t) =∓ �

2
(1− �) (8c)

with the upper sign indicating suction applied at the boundaries, whilst the lower sign corresponds to
injection (we take �¿ 0). In this formulation we have adhered to the notation used in the sequence
of papers by Drazin, Banks, Zaturska and co-workers when �= 1 and F ≡ 0.
We note that in this diJerentiated form of the equations, the pressure constants are absent and

the solution structure is parameterised by � at a given Re and �. There are clearly two outward
mass �ux components; M (x) across a plane at a constant x location (with y∈ [− l=2; l=2]) and M (y)

across a plane at a constant y location (with x∈ [− l=2; l=2]). It is easy to see from the form of (6)
that

M (x) =∓l(1 + �)
(
1 + �
2

)
x; M (y) =∓l(1− �)

(
1 + �
2

)
y: (9)
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Here, as above, the upper sign indicates withdrawal of �uid through the boundaries and the lower
sign indicates injection of �uid. Thus we see that speci6cation of the parameter � 6xes the relative
mass �ux in the two perpendicular directions parallel to the bounding planes.
We note that there are some obvious sub-cases to this general formulation: (i) �=1, �=0 admits

solutions to the mid-plane-symmetric suction/injection �ow that are axisymmetric, although as we
shall see, other more general states are possible; (ii) �=1, �=1 admits solutions of two-dimensional
Berman-type, although again, more general states will be seen to exist; (iii) �=0 corresponds to one
boundary being impermeable, for which solutions are again available for �∈ [0;∞). (As we have
discussed in the introduction, some of these cases have been described in the existing literature, we
do not repeat the full set of citations here.)
As a 6nal note regarding this formulation, we note that the distribution of the pressure is deter-

mined a posteriori, thereby determining the functional dependence

K1(t)
K2(t)

=
Re[f(0; t) + g(0; t)]fzz(0; t) + fzzz(0; t)
Re[f(0; t) + g(0; t)]gzz(0; t) + gzzz(0; t)

: (10)

In the analysis of Cox (2002) for the injection �ow between a porous boundary and an impermeable
plane (� = 0), the steady solutions are constructed subject to the condition that K1 ≡ K2, therefore
the solution structure of the Cox analysis corresponds to a cross-section of the {�; Re} parameter
space presented here.

3. The (steady) �oating disk problem (F = 0)

3.1. Axisymmetric pressure distributions (K1 = K2) with non-axisymmetric mass 0ux

Here we consider the steady �ow between a permeable table (at z = −1) and an impermeable
disk (at z =+1), in particular for solutions with axisymmetric pressure distributions, i.e. those with
K1 = K2. The axisymmetric version of this problem has been considered previously by Hinch and
LemaT̂tre (1994) and later for non-axisymmetric alternative solutions by Cox (2002).
The solutions presented by Cox are formulated under the condition that the pressure is axisym-

metric (i.e., K1 = K2). Cox examines solutions of this restricted form based on the tacit assumption
that in the �ow under any 6nite disk, the transition region around the edge of the disk acts to
impose an axisymmetric pressure on the inner (self-similar) solution. Obviously without a detailed
investigation of any outer edge region, we cannot say if more general forms of solution are available
in which K1 �= K2 in the inner region and this pressure non-axisymmetry is removed in the outer
edge region to match with the uniform surrounding atmospheric conditions.
Nevertheless, we can elucidate some of the remarks made by Cox regarding the solution structure

for K1 =K2. In terms of our formulation herein there is a locus of points in the Re–� plane at which
K1=K2. Clearly, along �=0 the mass �ux in both directions is equal and the solution is a Cartesian
description of an axisymmetric state more readily addressed in terms of a cylindrical–polar coordinate
system. However, there are other instances in which an axisymmetric pressure distribution can be
achieved even with non-axisymmetric mass �ux. These states correspond to solutions for which
K1 = K2 but f′(z) �= g′(z) and occur on a locus of points in the �–Re parameter plane.
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Fig. 1. The appearance of a non-axisymmetric injection state (shown as a dashed line) through a sub-critical pitchfork
bifurcation in the suction regime and its continuation (through a singular solution in the low-Re limit) to the injection
�ow regime. Note that the two branches of the pitchfork correspond to an interchange of f and g.

These non-axisymmetric states have already been described by Cox (2002), however there was no
detailed discussion regarding their stability and how they arose. Indeed, Cox was unable to continue
the solutions to lower Reynolds numbers and noted that “the reason why the calculation cannot be
continued for Re¡ 22 is unclear”. (Note that the Reynolds number referred to by Cox is positive
for injection �ows and based on the gap width, whereas ours is negative for injection �ows and
based on the half-gap width.) Based on our numerical approach we can address both the origin and
the stability of the non-axisymmetric states.
As shown in Fig. 1, the non-axisymmetric states referred to by Cox, for which f′ �= g′, arise

through a sub-critical pitchfork bifurcation. The axisymmetry is lost at a (suction) Reynolds number
of approximately 3:2517, with the nonlinear (sub-critically) bifurcated state continuing to negative
(injection) Reynolds numbers and persisting in the limit of large injection rates (Re→ −∞).
On the basis of these results, we may predict (and have con6rmed via an appropriately formulated

initial-value problem) that the non-axisymmetric solution branch is unstable as formulated by Cox
(2002).
The non-axisymmetric state in the low Reynolds number limit is (formally) singular with

f(z) = f̂(z)Re−1; g(z) = ĝ(z)Re−1 as Re→ 0: (11)

In the limit Re → 0, the leading-order form (f̂, ĝ) of the non-axisymmetric solution satis6es the
full equations (7), but with Re replaced by unity and the boundary conditions are homogeneous
(there being no injection/suction in this limit). Clearly, the trivial solution exists when Re→ 0 and
it is from this state that the axisymmetric solution branch originates; however there is essentially a
nonlinear eigenfunction solution as demonstrated in Fig. 2, and it is from this limiting solution that
the non-axisymmetric branch may be continued. Although the solution is “singular” in the above
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Fig. 2. The leading-order solution of the low-Reynolds non-axisymmetric state. Note that this is one of the non-trivial
Re = 0 states shown in Fig. 1, the other state simply corresponds to an interchange of f and g.

context, we note that there is no physical singularity and the asymptotic form above arises from the
de6nition of the suction rate as the natural velocity scale in the Reynolds number.

3.2. Non-axisymmetric pressure distributions (K1 �= K2)

We next consider �ows with non-axisymmetric pressure distributions, i.e. for which K1 �= K2, but
still such that F = 0; a point of interest is that such solutions do not appear to exist for all values
of the parameter � in general. Fig. 3 shows the variation of (lower) wall shear stresses at Re = 20
as the value of � increases, and very strongly hints at the formation of a 6nite-� singularity, and
further (convincing) proof of this can be gleaned by the behaviour of the �ow pro6les of f(z) and
g(z), as shown in Figs. 4 and 5, respectively. These latter 6gures show the respective pro6les at
increasing values of f′′(−1) (and hence �) as indicated; it is clear that: (i) f(z) takes on a very
pronounced, large amplitude sinusoidal pro6le, whilst g(z) takes on (an equally pronounced) linear
form, and is generally O(1) in magnitude. This type of behaviour was observed in many calculations
in this regime, and indicates that breakdown occurs at a critical value of �, say (�c). These (and
other) computations suggest that as �→ �c, the solution takes on the following form in the core of
the �ow, away from the walls

f(z) = (�c − �)−2f0(z) + (�c − �)−1f1(z) + · · · ; (12a)

g(z) = g0(z) + (�c − �)g1(z) + · · · ; (12b)

K1 = (�c − �)−4K10 + (�c − �)−3K11 + · · · ; (12c)

K2 = K20 + (�c − �)K21 + · · · : (12d)

Substitution of these into system (20b) leads us immediately to conclude that

g0(z) = 1
2"+(z + 1) +

1
2"−(1− z); (13)
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Fig. 3. Development of f′′(±1) and g′′(±1) for varying � with � = 0, Re = 20, � = 0. The calculations begin on the
solution branch that may be continued to the low-Reynolds number limit.

Fig. 4. f(z) pro6les for f′′(−1)= 1000; 2000; 4000; 8000; 16; 000; 32; 000 (� = 1:960756; 1:973276; 1:980298; 1:984152;
1:986205; 1:987244; respectively), on the solution branch of Fig. 3 with �= 0, Re = 20, �= 0.

where g(±1)="± as determined by (8) above, evaluated at �=�c. Note also this serves to determine
K20, namely

K20 =− 1
4 ("+ − "−)2: (14)
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Fig. 5. g(z) pro6les for f′′(−1)= 1000; 2000; 4000; 8000; 16000; 32; 000 (� = 1:960756; 1:973276; 1:980298; 1:984152;
1:986205; 1:987244; respectively), on the solution branch of Fig. 3 with �= 0, Re = 20, �= 0.

f0(z) is determined from the O((�c − �)−4) terms in (20b) which are
f0f0zz − f20z = K10; (15)

which leads us to conclude (implementing the “reasonable” boundary conditions of impermeability
at this order) that

f0(z) =
(−K10)1=2
n$

sin(n$z); (16)

which is entirely consistent with the form observed in our numerical results, which strongly point
to the case n=1, although there appears to be no reason why other integer values are not possible.
Clearly, neither (13) nor (16) satisfy the no-slip conditions on the walls, necessitating the need for
wall layers (on both walls). Taking the lower wall layer (for example), then the asymptotic form is

f = (�c − �)−1f∗0 (z∗) + f∗1 (z∗) + · · · ; (17a)

g= "− + (�c − �)g∗1(z∗) + · · · ; (17b)

where the boundary-layer variable z∗ = (�c − �)−1(z + 1). The equation determining f∗0 is then
1
Re
f∗0z∗z∗z∗ + f

∗
0f

∗
0z∗z∗ − f∗20z∗ = K10; (18)

subject to

f∗0 (0) = f
∗
0z∗(0) = 0; f

∗
0z∗ → (−K10)1=2 as z∗ → ∞: (19)

The layer on z = 1 is a mirror image of this layer.
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It should be noted that although in the above computation, f(z) exhibits the pronounced singular
behaviour in the core, it is possible to make choices of the parameters � and � for which g(z) would
be the �ow quantity exhibiting this feature (with f(z) taking on the aforementioned linear form in
the core); in this case the expansions for f(z) and g(z) become interchanged.
The conclusion, therefore, is that no steady-state solutions exist beyond �c (dependent upon Re),

at least in a local sense. It does appear, however, that in the limit of zero Reynolds number, i.e.,
Re → 0, that solutions do exist for all �, and our numerical results (not presented here) 6rmly
pointed to �c being inversely proportional to Re in this limit.
As a 6nal note, we may point out that these numerical solutions (and those to follow) were

derived by the application of four independent numerical algorithms, including both steady and
unsteady central-diJerenced approaches that apply Newton iteration, an unsteady spectral scheme,
and also using the (steady) bifurcation and continuation library of AUTO.

4. Solutions with F �= 0

In this section, we consider solutions of the form (6) for which the additional component F is
non-zero. We begin by noting that integrating the steady form of the equations for f(z) and g(z)
in (7) provides

1
Re
fzzz + (f + g)fzz − f2z − �F2 = K1; (20a)

1
Re
gzzz + (f + g)gzz − g2z − �F2 = K2: (20b)

It is clear that one may introduce the new dependent variables

%(z) = f(z)− g(z); �(z) = f(z) + g(z); (21)

satisfying

1
Re
%zzz + �%zz −%z�z = K1 − K2; (22a)

1
Re
�zzz + ��zz − 1

2
(�2z −%2z )− 2�F2 = K1 + K2: (22b)

The boundary conditions for a symmetric suction �ow (i.e., between two equally permeable bound-
aries, with �= 1) are then

�z(±1) =%z(±1) = F(±1) = 0; �(±1) =∓1; %(±1) =∓�: (23)

From Eqs. (22a) and (7c), it is apparent that a class of non-trivial F states may be obtained.
In particular, if we take K1 = K2 (i.e., an axisymmetric pressure distribution, though this does not
necessarily imply an axisymmetric velocity 6eld) then the governing system is formed from (22b)
together with

L{%z}= 0; L{F}= 0; (24)
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where the quasi-linear diJerential operator L is de6ned by

L ≡ 1
Re

d2

dz2
+ �

d
dz

− �z = 0: (25)

We may thus write F = &F̂ , %z = 'F̂ , for constants & and ', where L{F̂}= 0 and F̂ is arbitrarily
normalised such that F̂ z(−1) = 1.
Given this solution, Eq. (22b) becomes

1
Re
�zzz + ��zz − 1

2
�2z − F̂2

(
'2

2
− 2�&2

)
= 2K1; (26)

coupled toL{F̂}=0 with boundary conditions �z(±1)=0, �(±1)=∓1, and F̂(±1)=0, F̂ z(−1)=1.
In this formulation, because of the form of the nonlinear coupling, at a given Re a solution can only
be found at a 6xed value of the coupling coeVcient '2=2−2�&2. Clearly, this only acts to determine
the amplitude of the entire coupling term rather than & and ' individually. Thus, a continuum of
solutions exist in which the in�uence of the F term is parameterised by the amplitude coeVcient
&. We note further that the mass �ux parameter � does not play a direct rôle in this formulation;
however, for computational solutions of the original system cast into the description above we 6nd
that � eJectively determines &, ' and parameterises the same continuum of states.
Since the pressure distribution is axisymmetric for this class of solution, a more easily interpreted

formulation can be given in the context of the Hewitt and Duck (2000) and Al-Azhari (2003)
discussions. Resolution of the above solution into a cylindrical polar coordinate system yields a von
K=arm=an-like velocity 6eld (rÛ ; rV̂ ; Ŵ )T relative to (r; �; z) in the form given by (4) where ˜U =�z=2,
˜V = A%z=2, ˜W = −�, and � = B%z=2. Furthermore, the nonlinear coupling is such that only the

combination B2−A2 is determined, and the individual values of A and B are left free to parameterise
a continuum of states.
If B=0, i.e., there is axisymmetry since � ≡ 0, then the solutions are those provided by Goldshtik

and Javorsky (1989), leading to a swirl state through a supercritical pitchfork bifurcation.
When A= 0, the �ow bifurcates sub-critically to a non-axisymmetric solution with no swirl, this

is the same solution that we continued in Section 2 (although in that section we applied �= 0, for
an impermeable upper boundary) to illustrate the origin of the non-axisymmetric “air-disk” �ows
reported by Cox (2002).
Furthermore, the supercritical nature of the B=0 states and sub-critical nature of the A=0 states

are again easily seen in this formulation since the sign of the all important nonlinear coupling term
is inverted by switching between these two cases. In other words, one can derive a Stuart–Landau
equation in a straightforward manner that is valid in the neighbourhood of the pitchfork bifurcation
and in which the nonlinear cubic term changes sign in the two cases A= 0 and B= 0.
A continuum of states exists between these two extremes in which non-axisymmetry and swirl

can be combined in arbitrary ratios although the combination B2 − A2 must remain 6xed. In the
cylindrical polar formulation, it is the ratio of B=A that parameterises the continuum of solutions;
however, in the formulation of (6) this continuum is parameterised by the mass �ux parameter �,
with the case B= 0 occurring at � = 0 when c = 1 (axisymmetric mass �ux).
At 6xed values of � with � = −1, the bifurcation diagram is shown schematically in Fig. 6.

States of non-zero F arise via the supercritical pitchfork bifurcation, with the appearance of periodic
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Fig. 6. The bifurcation diagram for the transition to states with non-zero F (equivalent to the generation of axial vorticity)
for a 6xed �. Here, Re(v) denotes the pitchfork bifurcation to states of non-zero axial vorticity, whilst Re(p) indicates the
secondary instability via supercritical Hopf bifurcation.

Fig. 7. The �ow 6eld in the x–z and y–z planes for a non-zero F solution obtained at �= 1=2 and Re= 2. Note that the
mass �ux in the x-direction is three times that in the y-direction when � = 1=2.

states following a secondary instability through a supercritical Hopf bifurcation. We shall discuss
an initial-value formulation of this problem in later sections of this work; however, here we may
simply demonstrate the supercritical nature of the periodic states by the phase-plane plot of Fig. 8.
At the arbitrarily chosen values of � = 1=2, Re = 2 and �=−1, together with symmetric suction

applied at both walls (� = 1), the �ow 6eld in the mutually perpendicular planes x–z and y–z is
shown in Fig. 7. It is easily seen that in this case there are regions of outward and inward �ow,
although the inward �ow is obviously dominant since the boundary transpiration acts to withdraw
�uid. Furthermore, to illustrate the swirling nature of the �ow, the three-dimensional streamlines
originating from a sequence of points in the plane z =−0:2 are also shown in Fig. 9.
We may furthermore note that the ellipticity parameter c in formulation (6) can eJectively be

set to unity, since for any given c, the entirety of the solution set can be spanned by variation of
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Fig. 8. An evolution of the unsteady boundary-value problem to a limit cycle solution (arising through a Hopf bifurcation)
at �=0, Re=10. Point A denotes the location of the steady solution in this phase plane, corresponding to the axisymmetric
“bifurcation to swirl” state as described by Goldshtik and Javorsky (1989).

Fig. 9. The streamlines for a non-zero F solution obtained at �= 1=2 and Re= 2. This pattern of streamlines is repeated
(but inverted) in the upper half of the domain since the solution is symmetric about the midplane. The streamlines shown
originate from a square of starting points (as illustrated by the circular points) in the plane z =−0:2.
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Fig. 10. Location of pitchfork bifurcation from states from F ≡ 0 to F �= 0 in the case �=−1.

Fig. 11. Location of Hopf bifurcation from states with F �= 0 in the case �=−1.

� alone. This is again evident from the cylindrical polar formulation, since the constant c acts to
simply alter the relative magnitudes of A and B.
Fig. 10 shows the location of the critical Reynolds number (Re(v)) at which the F �= 0 states

bifurcate from the F ≡ 0 states.
The location of the aforementioned Hopf bifurcation is also of some interest. Fig. 11 shows how

variations in the wall parameter � (and �) aJect the critical Reynolds number Re(p). Note that (in
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Fig. 12. Variation of f′′(±1) with Re at � values as shown, � = 1, �=−1.

comparison with Fig. 10) for a particular solution branch/6xed value of the parameter �, the Hopf
bifurcation seems always to occur at a higher Reynolds number than the pitchfork bifurcation and
on the F �= 0 state.

4.1. The large Reynolds number limit

Here, we consider the solution structure in the limit of large Reynolds numbers. Results for the
variation of f′′(±1) and F ′(±1) with Reynolds number (with, crucially �=−1) for selected values
of the suction/injection parameter � and �=1 are shown in Figs. 12 and 13, respectively. We note that
the corresponding 6gure for g′′(±1) is similar to Fig. 12; the diJerence between these two quantities
is in fact O(1) but is dominated by the larger leading-order behaviour. These 6gures strongly suggest
that as the Reynolds number becomes large, all the aforementioned �ow variables become very large.
Inspection of the solution pro6les (see Fig. 14 showing results at Re=50; 60; 70; 80; 90; 100—highest
values exhibiting the largest gradients near the walls) clearly indicates also that for the most part
(i.e., away from the channel walls): (i) F(z) becomes increasingly independent of z and is clearly
seen to scale linearly with Re and (ii) both f(z) and g(z) are linear functions of z and O(1). Guided
by these observations, the conjecture is then therefore that the following scalings are appropriate, as
Re→ ∞, away from the walls

(f; g; F; K1; K2) = (f0(z); g0(z); ReF0(z); Re2K10; Re2K20) + h:o:t:; (27)

which, upon substitution into (7c) and (20b) leads to the conclusions that

f0 = "0z + "1; (28a)

g0 =−"0z + "2; (28b)
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Fig. 13. Variation of F ′(±1) with Re at � values as shown, � = 1, �=−1.

Fig. 14. Solution pro6les for �=1, �=0, Re=50; 60; 70; 80; 90; 100 (larger values of Re exhibit larger solution gradients
near boundaries).

K10 = K20; (28c)

F0 = K
1=2
10 = K

1=2
20 ; (28d)

where "0, "1 and "2 are all constants. Here note in particular how F0 is essentially independent of
z, whilst both f0 and g0 are linear in z, with equal and opposite gradients.
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The wall layers have a non-dimensional thickness O(Re−1); considering the lower wall layer, the
appropriate scalings are then

(f; g; F) = (f−(Z−); g−(Z−); ReF−(Z−)) + h:o:t:; (29)

where Z− = (z + 1)Re de6nes the boundary-layer scale. The governing equations are then

f−Z−Z−Z− + (f
− + g−)f−Z−Z− − (f−Z−)2 + (F−)2 = K10; (30a)

g−Z−Z−Z− + (f
− + g−)g−Z−Z− − (g−Z−)2 + (F−)2 = K10; (30b)

F−Z−Z− − (f−Z− + g−Z−)F− + (f− + g−)F−Z− = 0; (30c)

subject to f−(0)= 1
2(1+�); g

−(0)= 1
2(1−�); F−(0)=f−Z−(0)= g−Z−(0)= 0, F− → K1=210 , f−Z− ; g−Z− →

0 as Z− → ∞. The upper wall layer exhibits the same basic structure, with variables (in our no-
tation) f+(Z+); g+(Z+); F+(Z+), where Z+ = (Z − 1)Re, with the boundary conditions changed in
an obvious manner.
The key point now is that the two wall layers must both be compatible with the core solution

(28), which in particular demands that

f−(Z− → ∞) + g−(Z− → ∞) = f+(Z+ → −∞) + g+(Z+ → −∞): (31)

It is this condition that serves to determine the key quantity K1=210 , this being the (constant) value
of F(z) in the core. Fig. 15 shows the results of solving the above system (with the value of
(K10 + "20)

1=2 appropriately chosen) for the case of � = 1, � = 0. It should be noted that for the

Fig. 15. Asymptotic solution pro6les (near boundaries).
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case � = 0, f+(Z+) ≡ g+(Z+). These results are to be compared with those shown in Fig. 14, in
particular, close to z=±1. Note also the especially good comparison between our asymptotic results
using (30) which predict K1=210 ≈ 0:3346 and the almost constant core values of F(z)=Re at increasing
Re (using the ‘full system’), as shown in Fig. 14.

5. Unsteady calculations

We now consider the nature of the �ow, using an initial-value-type of approach to the problem,
with particular attention to �ow parameter regimes for which no steady-state solutions exist. For
the choice of parameters to be shown, the nature of the �ow development diJers fundamentally
according to the value of �. In the case of � = −1, steady-state solutions were attained in all the
calculations performed in the parameter range of interest using the steady equations, and will not
be considered in this section); however, for �= 0 or 1 it was apparent that the solutions frequently
grew signi6cantly in amplitude, and we focus our attention on this aspect of the �ow in this section.
In the case �=0, in regimes for which no steady-state solutions existed (i.e., �¿�c), very large

solution amplitudes were obtained. In some cases it appeared that a singularity might be forming, or
alternatively large unbounded growth (in time) was occurring. It is notable that much of the analysis
of the �→ �c limit of Section 3 is again applicable, but with the large parameter 1=(�c−�) replaced
by ,(t), where |,|�1. Indeed, the solution behaviour (in particular, the solution pro6les f(z) and
g(z) resembled very much those shown in Figs. 4 and 5). Although a 6nite-time singularity cannot
be dismissed as a possible scenario, it is worth mentioning that Cox (1991) showed that in the case
of the Berman (1953) problem (in our terminology, the case g = F = 0), the solution does persist
without breakdown, in contrast to the suggestion of Childress et al. (1989). Subsequently King and
Cox (2001) went on to show (using an “exact” solution to the Berman problem) the nature of these
persisting solutions. It is interesting, in this context, to note that the analysis of King and Cox (2001)
can be extended to our case for which g6 0 (but with F=0) as follows. It turns out that a solution
of the form

f = A0(t) + B0(t)z + C0(t)sin(.(t)z) + D0(t)cos(.(t)z); (32)

g= A1(t) + B1(t)z (33)

admits an exact solution to (7a) and (7b) provided three conditions linking the A0(t), A1(t), B0(t),
B1(t), C0(t), D0(t) and .(t) are satis6ed (whilst other conditions may be provided by the wall
conditions), in a self-consistent manner, analogous to that employed by King and Cox (2001).
We now move on to consider a computation with �= 1 in which F(z; t) was explicitly triggered

through the introduction of an “imperfection” in the (lower) wall boundary condition. The speci6c
calculation performed was with

f(−1; t) = 1
2(1− e−t)4(1 + �); g(−1; t) = 1

2(1− e−t)4(1− �); (34a)

f(1; t) =− �
2
(1− e−t)4(1 + �); g(1; t) =− �

2
(1− e−t)4(1− �); (34b)

F(−1; t) = 0t4e−t ; (34c)



R.E. Hewitt et al. / Fluid Dynamics Research 33 (2003) 17–39 35

Fig. 16. Temporal development of f′′(−1), g′′(−1) and F ′(−1); � = 7:5, �= 0, Re = 40, �= 1.

Fig. 17. Temporal development of f′′(1), g′′(1) and F ′(1); � = 7:5, �= 0, Re = 40, �= 1.

where in the results to be presented, �=7:5, �=0 (this is akin to the Cox, 2002 problem, but with
F(z; t)), 0= 0:01 and Re= 40; the homogeneous upper wall boundary condition on F was retained.
Results for wall values of the solution are presented in Figs. 16 (lower wall) and 17 (upper wall)

and it is quite clear from these results that a 6nite-time singularity is being approached (somewhat
sooner than in the corresponding �=0 case). Away from the channel walls, the following asymptotic
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Fig. 18. f(z) pro6les, � = 7:5, �= 0, Re = 40, �= 1.

expansions are the most appropriate:

f = (ts − t)−1f0(z) + · · · ; g= (ts − t)−1g0(z) + · · · ; F = (ts − t)−1F0(z) + · · · ; (35)

K1 = (ts − t)−2K10 + · · · ; K2 = (ts − t)−2K20 + · · · : (36)

Substituting this into (20b) (with the addition of the time-derivative term in this system) leads to
the following system of equations:

− f′0 − f′20 + (f0 + g0)f′′0 + F20 = K10; (37)

− g′0 − g′20 + (f0 + g0)g′′0 + F20 = K20; (38)

F0 + F0g′0 − g0F ′0 = 0; (39)

subject to f(±1)=g(±1)=F(±1)=0. Indeed, a similar system has been found in related problems
studied by Hall et al. (1992) and Al-Azhari (2003). Solutions (which are strongly suggested in the
pro6le results shown in Figs. 18, 19 and 20) may be sought in the form

f0(z) = &0 sin(n$z); (40a)

g0(z) = '0 sin(n$z); (40b)

F0(z) = �0 [1 + cos(n$z)] : (40c)
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Fig. 19. g(z) pro6les, � = 7:5, �= 0, Re = 40, �= 1.

Fig. 20. F(z) pro6les, � = 7:5, �= 0, Re = 40, �= 1.

Substituting these forms into (37)–(39) leads to the conditions:

&0 = '0 =− 1
2n$

n= 1; 2; 3 : : : ; �0 = 1
2 ; K10 = K20 =− 3

4 : (41)

Although in the computations performed for this study all clearly pointed to the case n = 1, other
computations performed in the related study of Al-Azhari (2003) certainly indicate that is not always
the case.
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It has been shown by Al-Azhari (2003) that the boundary layers that form in this case are of
thickness O((ts−t)1=2); it is also worth noting that if n �= 1 above, then the �ow (formally) comprises
a sequence of inviscid cells, separated by O((ts − t)1=2) viscous layers.

6. Discussion

In this work, we have reconsidered a range of self-similar �ows between two in6nite, parallel,
porous planes. Many results for such �ows have been provided by Philip Drazin and his collabora-
tors, and here we have extended them further. The class of stagnation-point solutions that we seek
are well known in many contexts, including �ows of rotating-disk type, and of boundary-layer form.
We have taken the three-dimensional solutions provided by Taylor et al. (1991) and extended the

solution structure to include an additional component (denoted by F(z) herein). The inclusion of this
new term allows for the inclusion of swirl. It is easy to note that the axial component of the vorticity
for this type of self-similar �ow is c−1=2(�c−1)F(z). So we can observe that, provided that �c �= 1,
the �ow character is fundamentally altered. We can also highlight that in the case �=−1, c=1, the
solution structure provided by (6) is equivalent to that provided by Goldshtik and Javorsky (1989);
here the cylindrical-polar coordinate description of their paper has been resolved into its Cartesian
equivalent in our description. However, the solution of Goldshtik and Javorsky is axisymmetric,
whereas here the solution is such that the mass transport in the in-plane directions (i.e., parallel to
the x- and y-axis) may be chosen independently and the parameter c can be viewed as a measure
of �ow ellipticity. Given the form of solution, it is evident that the ellipticity parameter c can be
speci6ed arbitrarily. We thus see that the solutions of Goldshtik and Javorsky are generic and can
be extended to �ows that behave in a qualitatively similar manner; with the generation of swirl
through a bifurcation, followed by the appearance of periodic states following a Hopf bifurcation
arising from the nonlinear solution with non-zero axial vorticity.
Another interesting feature of this system is the dependence of the solution structure on the as-

sumption of 6xed relative mass �ux versus 6xed relative pressure dependence. In particular, in
formulating the steady boundary-value problem one must either specify the relative mass �ux pa-
rameter � or the pressure ratio K1=K2. These two formulations are distinct however. For example,
on specifying that K1 =K2, the non-axisymmetric state shown in Fig. 1 (with F =0) arises through
a sub-critical pitchfork bifurcation, and thus in the similarly formulated initial-value problem, the
non-axisymmetric state cannot be realised through a time-dependent process owing to an instabil-
ity. However, a formulation of the problem in terms of a 6xed relative mass �ux reveals a full
one-parameter family of solutions, spanned by �, at a 6xed Reynolds number, some of which will
have (in addition) K1=K2. In this latter context, the non-axisymmetric solution branch is (in general)
achievable in the initial-value problem. One might 6nd these two viewpoints surprising in that the
two conditions can essentially be viewed as 6xing the �ow in the far-6eld, but lead to distinct evolu-
tions of the self-similar �ow. This is in contrast to the usual assumptions regarding the applicability
of self-similar solutions and their adjustment to meet appropriate boundary conditions via some edge
region of limited in�uence in a 6nite geometry. The possibility of solutions of this type providing a
basis for a more detailed analysis of the applicability of self-similar solutions and the in�uence of
far-6eld conditions in large aspect-ratio domains is a subject for future work. It is also noteworthy
that steady-state solutions with �=−1 do/can exist where steady-state solutions with �= 0 or 1 do
not.
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