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The general problem of a boundary-layer flow carrying a dilute, mono-disperse
suspension of small particles (together with gravitational effects) is considered. The
problem is modelled using the ‘dusty-gas’ equations, which are a coupled equation set
linking the fluid motion to that of the particle motion (both of which are modelled as
continua). A number of qualitatively distinct potential scenarios are predicted. These
include a variety of boundary-layer breakdowns, and the formation of shock transitions
in the distribution of the particulate phase (together with the development of particle-
free zones). Numerical results predicting these differing behaviours are confirmed
through local asymptotic analyses of the governing equations. Although we consider a
general class of boundary layer, our results are compared and contrasted with previous
studies of specific cases, most notably the constant freestream fluid velocity case (akin to
the ‘clean’ Blasius boundary layer). In the case of a boundary-layer flow driven by a
linearly retarding free stream (the analogue of the classical ‘Howarth’ boundary-layer
problem), the effects of the particle phase are surprisingly seen to (slightly) delay the
separation of the boundary layer.
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1. Introduction

Prediction of the dispersal of very large numbers of very small, solid particles in a
continuous fluid medium (either liquid or gas) is a common and challenging
problem in a wide variety of settings. Examples are found in a number of
processes in the automotive, chemical and coatings industries and in
environmental applications such as the disposal of wastewater-borne particulates
in the coastal zone and the prediction of particulate deposition from urban
atmospheric gas emissions. Accordingly, the problems associated with predicting
the flow characteristics and general properties of such dilute-solution systems
are not only of fundamental interest from a fluid mechanical standpoint but
also of great economic, social and environmental significance. Much scientific
effort has been applied to these multiphase systems, particularly in the
chemical engineering, environmental fluid mechanics and applied mathematics
communities.
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The role of boundary layers in dilute suspensions of small mono-disperse
particles has been studied for over fifty years. Marble (1970) summarized much
of the early work in this field, and Osiptsov (1997) subsequently gave a wide-
ranging review of the more recent developments. Using what have since become
commonly known as the ‘dusty-gas’ equations, the Blasius-like boundary-layer
problem has predictably received much attention. The original studies are
described in Singleton (1965) and Soo (1968), with more recent work being
Osiptsov (1980), Asmolov (1995) and Wang & Glass (1988). Some common
features emerge in these studies, the most important of which are as follows. (i)
near the leading edge, in the absence of any ‘particle viscosity’, the particles slip
over the surface, while far downstream, the particles generally move with the
flow. (ii) There is a singularity in the particle volume fraction that develops on
the wall at a particular downstream location; solutions beyond this point are
problematic. It has been suggested by some authors (including Osiptsov 1988)
that the introduction of the Saffman (1965) force can mitigate the problem in the
dusty analogy to the Blasius boundary layer (however, see our comments in §5).
Note that Wang & Glass (1988) continued their numerical results downstream of
the singularity, an approach which is, as we shall show, not valid.

Modification of the boundary layer by buoyancy of the embedded particles has
received less attention. Foster et al. (2003) showed that gravitational effects
greatly modify the Kármán boundary layers that occur in connection with a spin-
up, showing the potential for a ‘shock’ to occur in the particle concentration
distribution. Such shock structures have also been reported in Ungarish (1993)
and Ungarish & Greenspan (1983), for example, and are due to the kinematic-
wave structure of the particle-mass conservation equations.

In a recent study of a laminar wall jet, Duck et al. (2004) have found that the
self-similar structure of the particle-free jet, described first by Glauert (1956),
becomes non-similar when a dilute suspension of particles is considered.
Furthermore, a singularity in volume fraction occurs at the wall (linked to a
stagnation point in the particle motion) and is an inherent prediction of the
model. In the work of Duck et al. (2004), the singularity cannot be removed in
any simple manner and suggests that a non-dilute model is required in the local
neighbourhood of the singularity. The direction of the gravitational force acting
on the particle phase has a strong impact on the character of this singularity.
The present authors also determined that, apparently unlike the Blasius-like
boundary layer, the inclusion of a Saffman force, which is small along the length
of the wall jet, does not remove this singularity.

In this paper, we explore the character of particle-laden boundary layers more
generally. We shall formulate the problem for general freestream variations of
the fluid flow, and present results for both the Falkner–Skan-type freestream
variations,

u� ZUN
x�

L

� �m

; 0%m%1; ð1:1Þ

and that considered by Howarth (1934),

u� ZUN 1K
x�

L

� �
: ð1:2Þ
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It should be emphasized, however, that although we discuss Falkner–Skan-like
conditions at the edge of the boundary layer, the solution of the boundary layer
itself is not self-similar (the usual Falkner–Skan self-similar forms are certainly
inappropriate for the general governing equations for a dusty-gas and one must
consider the general spatially developing flow). Because of the potentially
complex nature of the Euler flow outside the boundary layer, we are not at
liberty to arbitrarily specify the edge values of either the particle velocity or the
volume fraction in the external flow. We shall calculate admissible external flow
conditions, and use these as appropriate boundary conditions for the boundary-
layer solutions.

2. The dusty-gas equations of motion

The dimensional continuity equations for an incompressible fluid carrying small,
solid particles are taken to be of the form

V�$u� Z 0 and V�$ðau�
pÞZ 0; ð2:1Þ

where u� is the velocity vector of the fluid component, u�
p is the particle-

continuum velocity vector, and a is the particle volume fraction (assumed to be
small). The equations for the carrying fluid and the dilute particle phase are
assumed to be steady and to take the form

rfðu�$V�Þu� CV�p� ZmV�2u�KF�Krfg; ð2:2aÞ

rpaðu�
p$V

�Þu�
p ZF�KrpagCrfag; ð2:2bÞ

ue~xm

g

Ω2qΩ= 
2mp
m+1
æ

Figure 1. A flow geometry appropriate for the Falkner–Skan-type edge conditions; although the
results we present for the boundary layer developing on the impermeable wedge are not restricted
to having self-similarity and are more general in nature. We assume that the local gravitational
forcing is aligned as shown and q2[0,p/2]; thus the upper boundary layer is such that KO0, while
the lower boundary layer has K!0, where K is as defined in (2.6).
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where m is the fluid viscosity coefficient, (rf, rp) are the fluid and particle
densities. Note that a buoyancy term is the final term in (2.2b). We have replaced
factors of (1Ka) with 1, in accordance with the dilute limit. The quantity F � is
the interaction force between the fluid and the particle continuum.

The gravitational acceleration vector can, in general, be taken at some angle
to the surface; however, in order to reduce our parameter space by one
dimension, we assume that gravity acts perpendicularly to the on-coming flow.
This restriction leads to a connection between the angle q and the parameter m
(in (1.1), as arises in wedge flows; see figure 1), namely qZpm=ðmC1Þ. Clearly,
this relationship is the classical one for an irrotational outer flow. However, one
can assume that the inviscid fluid flow (even when particle-laden) is irrotational
and then evaluate the particle velocity and volume fraction associated with that
motion, but there may well be situations where the particle solution becomes
singular (for example) as we shall see below. In those circumstances, the
irrotational assumption may not, in fact, be proper. It should be pointed out that
the basic equation set (2.1), (2.2a) and (2.2b) falls into the same class as that
taken in a number of recent successful studies by other authors, including Slater
& Young (2001), Hernández (2001), Narayanan & Lakehal (2002) and Féraille &
Casalis (2003).

Complete specification of the flow and closure of the model, requires that the
fluid–particle interaction force be specified. In our case, following previous work in
this area, assuming small, spherical particles (radius a), we assume Stokes drag,

F�
Stokes Z

9m

2a2
aðuKupÞ: ð2:3Þ

In addition, many studies, including Duck et al. (2004), have included the Saffman
(1965) force, which can be written as

F �
Saffman Z

ca

a
ð4m2r2fDijDijÞ1=4n!ðu�Ku�

pÞ; ð2:4Þ

whereDij is the deformation tensor, c is a numerical constant and n is a unit vector
normal to the plane of the two-dimensional flow. However, the Saffman force does
not appear to play a significant role in the problems discussed in this paper; we
quantify this conclusion in §5.

(a ) The boundary-layer equations

If the dimensional fluid speed at the edge of the boundary layer is denoted by
UNue(x), then the velocity vectors of the fluid and particles are UNðu;ReK1=2vÞ,
UNðup;ReK1=2vpÞ, respectively, and the corresponding dimensionless coordi-
nates are x, y normalized using a characteristic streamwise length-scale L
and L ReK1/2, respectively,1 and then assuming the Reynolds number ReZ
UNL=n[1 (the kinematic viscosity of the fluid being nZm/rf), the dusty-gas
equations can be written,

uux Cvuy C �px Z uyyKbaðuKupÞ; ð2:5aÞ

upupx Cvpupy Z
b

g
ðuKupÞ; ð2:5bÞ

1 Note that, for a given value of m, a sensible definition can be given for L in terms of the
parameters of that particular problem; for mZ0, L is the actual length of the plate.
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upvpx Cvpvpy Z
b

g
ðvKvpÞKK cos q; ð2:5cÞ

ux Cvy Z 0; ð2:5dÞ

upax Cvpay ZKaðupx CvpyÞ: ð2:5eÞ

The dimensionless quantities that arise in this system are

bZ
9

2

nL

UNa
2
; gZ

rp

rf
; KZ

gL Re1=2

U 2
N

1K
1

g

 !
; ð2:6Þ

and the usual requirements for the validity of this equation set are that g[1,
b[1, max a/1. The ordering of b implies that the boundary layer is much
thicker than the particle size. The requirement that the distance between
particles also be much smaller than the boundary-layer width is ba2/3[1. This
is consistent with the analysis that follows but we note that this may be difficult
to achieve in a laboratory setting. The rationale for maintaining parameters of
extreme size in the governing equations is that the combinations b/g, ba and
K all remain order-one parameters. In the boundary-layer equations
(2.5a)–(2.5e), �p is a pressure with the gravitational potential included. The
boundary conditions for the fluid phase are

u Z v Z 0 on y Z 0; u/ueðxÞ as y/N: ð2:7Þ

However, the choice of boundary conditions for the particle phase is somewhat
more subtle (and will be discussed later), but notionally we expect that

up/upeðxÞ and a/aeðxÞ; for y/N: ð2:8Þ

In this paper, we assume that the fluid outside the boundary layer is irrotational,
leading to two types of edge velocities, given by

ueðxÞZ xm; 0%m%1 and ueðxÞZ 1Kx; ð2:9Þ

(consistent with (1.1) and (1.2), respectively). The first of these is due to the flow
of a fluid past a wedge of half-angle q, as shown in figure 1. Precisely, what are
appropriate functional forms for upe and ae connected to these fluid flows is
discussed in §3.

The volume fraction equation (2.5e) importantly involves the divergence of
the particle fluid velocity, which in general is non-zero. Intuitively, we expect
the divergence of the particle field to be of some significance since, in the
absence of sources/sinks, any assumption that the external flow has a uniform
volume fraction can only be consistent if the particle flow field is also
divergence free. By taking the divergence of the particle momentum equation,
we obtain a transport equation for the particle velocity divergence, V$up hD,
in the form

ðup$VÞDC
b

g
DZKðupxÞ2KðvpyÞ2K2upyvpx : ð2:10Þ
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3. The outer flow and conditions at the boundary-layer edge

Perhaps surprisingly, inviscid flows of dilute suspensions have received little
analysis to date, and the question of an appropriate particle-phase flow field for
flow past a wedge is not entirely straightforward. It can easily be shown that a
scenario in which both the fluid and the dispersed phase are irrotational
everywhere is not possible. Nevertheless, for streaming flow past any object, an
irrotational flow seems plausible. The consequences of this assumption are that
there must be variation in the volume fraction in the flow and that the particle
phase is rotational. Though we do not examine further the global outer flow
characteristics, evaluating the boundary-layer equations at the outer ‘edge’ of
the boundary layer does provide conditions for the boundary layer. Using
equations (2.5b), the y-derivative of (2.5c) and (2.5e), all evaluated at the layer
edge leads to

upeu
0
pe Z

b

g
ðueKupeÞ; upeE

0
eCE2

e C
b

g
Ee ZK

b

g
u 0
e; upea

0
eCaeDe Z 0; ð3:1Þ

where EeðxÞZvvp=vyðy/NÞ, upeðxÞZupðy/NÞ and DeðxÞZDðy/NÞZu 0
peC

Ee are the relevant functions evaluated as y/N and primes denote
differentiation with respect to the streamwise coordinate x. To arrive at this
system, we have assumed that vup=vy; v

2vp=vy
2 vanish for y/N. We also retain

the transport equation for D, (2.10), which when evaluated at the layer edge,
becomes

upeD0
e C

b

g
De Cðu 0

peÞ2 CE2
e Z 0: ð3:2Þ

From (3.1) and (3.2), it follows that

upe u 0
peC

b

g

� �
Z

b

g
ue; ð3:3aÞ

upe
d

dx
C

b

g

� �
upe

a0
e

ae

� �
Z ðu 0

peÞ2 CE2
e : ð3:3bÞ

Thus, for a given fluid edge behaviour ue(x), (3.3a) can be solved for the
streamwise particle motion upe(x), then the second of (3.1) for the particle motion
normal to the boundary Ee, and finally (3.3b) determines the external volume
fraction ae(x).

Below, we focus our attention on freestream fluid velocities of the form
ue(x)Zxm, then later in the paper, we will go on to broaden the class of
freestream variations by considering Howarth-type freestreams (corresponding
to (1.2)).

(a ) mZ0: a Blasius-type external flow

We first consider the Blasius-like case, for which mZ0. There is a trivial exact
solution to (3.3a), upeZ1, together with aeZaeðxZ0ÞZa0 (constant) and Eeh0
from (3.3b). Since the external particle flow is divergence free, we can sustain a
spatially uniform external volume fraction.
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(b ) mZ1: Hiemenz flow

For the Falkner–Skan profiles with mZ1, the general solution of (3.3a) can
easily be found to be

ðupeKr1xÞr1ðupeCr2xÞr2 ZC ; C Z const:; ð3:4aÞ

where

r1;2 ZH
b

2g
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4g2
C

b

g

s
: ð3:4bÞ

The corresponding solution for Ee may also be found, namely,

Ee Cs1
Ee Cs2

Z �CxKðs2Ks1Þ=r1 ; ð3:5aÞ

where �C is another constant and

s1;2 Z
b

2g
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4g2
K

b

g

s
: ð3:5bÞ

Further, the equation for ae may be integrated, and the solution that is bounded
at the origin is given by

ae ZC 0xgðr
2
1Cs21Þ=br1 ; ð3:6Þ

with the constant C 0 not specified. There are two possibilities: (i) if CZ0, then
upeZr1x, corresponding to a Hiemenz flow; this appears to be a self-similar case,
but it turns out that the only such solution is one which is entirely particle free,
i.e. ah0 inside the boundary layer, and so we do not investigate this case further;
(ii) if CZUr1Cr2

p0 , then upewUp0, a constant, at xZ0, so this case falls into the
same class as those discussed below.

(c ) 1OmO0: wedge flows

There are again two possibilities: (i) upe(0)Z0, and (ii) upe(0)ZUp0 (const.).
Thus, these two scenarios, noted above for mZ1, appear to exist for all m. In this
paper, for wedge flows, we examine just case (ii) flows.

The small-x behaviour is found from (3.1) to take the form

upewUp0K
b

g
xC

b

gUp0

xmC1

mC1
C/ : ð3:7Þ

The quantity Up0 is an arbitrary constant, which although retained explicitly in
the analysis as a parameter, will be set to unity in the numerical calculations; we
shall comment further on the appearance of this arbitrary constant in §8. We
turn now to expressions for the volume fraction. Asymptotic solutions for Ee for
small x may be found, and then the solution to (3.3b) is

ae Za0 1C
bx

gUp0

C/

� �
: ð3:8Þ
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Figure 2a shows the downstream development of upe at three selected values of
m, namely 0.1, 0.211 and 0.5, with b/gZ1, as determined from the full numerical
solution of (3.1). Although, this figure indicates a relatively benign behaviour,
inspection of the corresponding results for ae, as shown in figure 2b, reveal a
singular response at the two larger values of m. Note that for the outer-edge
problem, the results will depend linearly on a0 and this scaling has, therefore,
been applied to the presented data.

The nonlinear equation for ae (and also Ee) often develops a singularity at a
finite value of x. In fact, it is straightforward to show that near this location xs,
the approximate solution is

Eew
upeðxsÞ
xKxs

; aew
1

xKxs
: ð3:9Þ

Numerical solution verifies this simple singularity structure, and also indicates
that this outer-flow singularity develops only in a restricted range for m, namely,
for mOms, where we have determined ms to be 0.2109 (approximately).

In the cases when solutions do extend (infinitely) far downstream, it is
straightforward to show that (see also appendix A)

upewxmK
mg

b
x2mK1C/; ð3:10Þ

and so to leading order the freestream particles have the same velocity as that of
the fluid, and

aewc1 1K
2m2b

gð1KmÞ x
mK1C/

� �
; ð3:11Þ

where c1 is a constant (determined through integration downstream from the
leading edge).
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Figure 2. Development of the edge quantities (a) upe and (b) ae; solid, mZ0.50; dashed, mZ0.211;
dotted, mZ0.10; all with b/gZ1.
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(d ) Howarth flow

A final case examined in this paper is the irrotational outer flow ueZ1Kx ; an
example due to Howarth (1934). In this case, equation (3.3a) leads to the implicit
solution

upeKs1ð1KxÞ
Up0Ks1

� �s1

Z
upeKs2ð1KxÞ

Up0Ks2

� �s2

; ð3:12Þ

and the exact solution for Ee that is bounded at xZ1 is EeZKr2. The result for
ae cannot be given in any simple closed form, although the small-x behaviour is
given by

upewUp0C
b

g

1

Up0

K1

� �
xC/; aewa0 1C

r22g

b
xC/

� �
; ð3:13Þ

where r1,2, s1,2 are given by (3.4b) and (3.5b), respectively.

4. Boundary-layer results for 0%m!1 for KR0

When there are no gravitational effects (KZ0), then for mR0 the dispersed
phase velocity vector is directed towards the wall. This can be confirmed by a
local analysis close to the leading edge (i.e. small x), and is also confirmed in our
numerical computations. This is in spite of the bidirectional nature of the
transverse fluid velocity component (v) in cases for which mO0.

Positive values of the buoyancy parameter K reinforce this downward
migration of the particle suspension. Consequently, the hyperbolic nature of
the equations for the particle velocity vector implies that the component of
particle velocity normal to the wall, vp, cannot be specified at the wall, rather
conditions at the outer edge of the boundary layer for the particle phase must be
specified. This was also the case with the wall jet analysed by Duck et al. (2004).

However, when KZ0 with the specified conditions at the leading edge
(upZUp0, vpZ0), it is easy to see (from evaluating (2.5b) and (2.5c) on yZ0)
that the particle behaviour on the wall is

vpðy Z 0ÞZ 0; upðy Z 0ÞZUp0K
b

g
x: ð4:1Þ

Although, these conditions were not imposed on the system, they arose naturally
during the course of the computations. This certainly indicates the prospect of a
singularity at the point xZgUp0/b, even without any computation being
performed. This is rather unusual in the context of boundary layers (including
the analogous wall jet problem of Duck et al. 2004), where generally singularity
location is very much dependent on the details of the boundary-layer solution
(and is the situation in the present study when KO0). This difference arises
because the wall is itself a characteristic when KZ0 and, therefore, the solution
at yZ0 is unaffected by the behaviour above it, being determined instead by the
flow at the leading edge only.

Naively approaching the case K!0 with precisely the same numerical method
used for KR0 leads to spurious computational results which are highly sensitive
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to grid choices immediately downstream of the leading edge. This regime is
fundamentally different, because of the bidirectional nature of vp when K!0,
which can result in shock-like transitions in the particle volume distribution.
Given this distinction, we shall postpone discussion of this case until §6.

(a ) The numerical formulation

Duck et al. (2004) have found that the presence of a dispersed phase in the flow
destroys the self-similar character found in the ‘clean’ case. One can write, from
the outset, the boundary-layer equations in Falkner–Skan form, with uewxm and
a boundary-layer thickness scaling as xð1KmÞ=2, but this leads to contradictions, so
that no self-similar structure is possible for 0%m!1. Although, the mZ1 case
looks to be a good candidate for a fully self-similar solution, similarity
requirements imply that a can be a function of y only, and compatibility with
(3.6) implies that the only solution that is self-similar is one in which there are no
particles, i.e. ah0 (as mentioned in §3).

Nonetheless, even for general m, for small x, the boundary layer begins to
develop according to the aZ0 Falkner–Skan similarity form, and so it is
convenient to use these variables numerically to capture the initial stages
accurately. It can be shown that the following forms are consistent with the small
x behaviour of the flow and particle equations:

u Z xmUðx; hÞ; v Z xðmK1Þ=2V ðx;hÞ; up ZUp0CxUpðx; hÞ;

vp Z xðmC1Þ=2Vpðx; hÞ; aZa0 Cx �aðx; hÞ; xZ xð1KmÞ=2:
ð4:2Þ

The similarity variable is of the Falkner–Skan type, namely hZyxðmK1Þ=2. Rather
than assuming the pure-similarity form for the streamwise fluid velocity in the
freestream (i.e. Uðx; h/NÞ/1), in the interests of generality we shall instead
assume the form

Uðx; h/NÞ/UeðxÞ; ð4:3Þ
although we will take Ue(0)Z1 in order to connect to the leading-edge similarity
structure.

The equations governing the transformed quantities (4.2) are easily obtained
by substitution, and are solved subject to the edge conditions.2 The quantities
Upe and �ae (that is, the quantities Up and �a evaluated at the edge of the
boundary layer, i.e. as h/N) must be determined numerically in conjunction
with the rest of the computation. To achieve this, we suppose that as h/N,
Vp/ �EehCVpe, consistent with V/KmUehCVe in this limit. The resulting
edge quantities are then determined by the transformed versions of (3.1), (3.3a)
and (3.3b) in a manner similar to that of §3.

2We note that some slight simplification is achieved via the transformation

Up/
b

g
Up; Vp/

b

g

� �1=ð1KmÞ
Vp; x/

g

b

� �1=2

x; a/
b

g

� �1=ð1KmÞ
a; Up0/

g

b

� �m=ð1KmÞ
Up0;

with no rescaling for (U, V ). However, in this paper we prefer to minimize the notational changes
that would result from such a transformation and maintain the more physically relevant scales.
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A key point is the choice of boundary conditions on the wall, hZ0. For the
fluid, this is straightforward and standard, merely the impermeability and no-slip
conditions,

UðhZ 0ÞZV ðhZ 0ÞZ 0: ð4:4Þ

The particle phase is crucially different and, as discussed above, the hyperbolic
nature of the particle phase necessitates the imposition of edge (h/N)
conditions on Up, Vp and a.

A standard Crank–Nicolson procedure (marching in x) is adopted, with
second-order finite differencing in h coupled with Newton iteration.

(b ) The numerical results

The first set of boundary-layer results is presented in figure 3a for the case
mZ0, KZ0, ba0Z0.1, b/gZ1. (We recall here that the combinations ba0 and
b/g are O(1) quantities in the dusty-gas model.) The immediate observation is
the apparent ‘blow-up’ of the particle concentration as the location xZ1 is
approached. It must be emphasized (again) that as the particle concentration
becomes large, the basic underlying assumption of the dusty-gas model becomes
invalid locally. A second, significant observation is the apparent linear
downstream decrease of up(yZ0) towards zero as x/1 (consistent with (4.1)
above). An additional third point (not illustrated in the figure) is that
vp(yZ0)Z0 for all x. The last two features can be readily confirmed from the
equations of motion (specifically (2.5d) and (2.5c)) evaluated on yZ0, while all
three features are part of the analysis of the a singularity, studied in §5. We note
that the response of the fluid (as measured by the wall shear stress, Uh(hZ0)) is
relatively benign. This apparent singularity in the dilute model is to be expected,
given the associated stagnation point of the particle continuum encountered on
the wall at this point.
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Figure 3. The development of wall values with x for mZ0, b/gZ1. (a) KZ0. In case (b), the
leading-order asymptotic forms for x/N are shown for xO4.5; the asymptotic form for ba is
indistinguishable from the data presented (KZ10).
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Figure 3b shows the wall values when mZ0 with a buoyancy parameter KZ10
(all other parameters correspond to those taken in figure 3a). The effect of
buoyancy is clearly seen to be drastic, with the motion continuing unabated
downstream, with no hint of any breakdowns in any of the flow or particle
quantities. The asymptotic structure of the far downstream flow is given in
appendix A, and this behaviour is indicated on figure 3b.

We now turn to consider cases for which ms0. Computations in which
mZ0.1, KZ0, ba0Z0.1, b/gZ1 show little qualitative difference from those
presented in figure 3a. The same features occur, with vp(yZ0)Z0, for 0%x!1,
xZ1 is a stagnation point for the particle motion, accompanied by an apparent
singular response in the volume fraction, a. A computation that includes the
effects of buoyancy is highlighted by figure 4a. In this case, mZ0.1 and all other
parameters are the same as those chosen for figure 3b. The results show some
features in line with the mZ0, KZ10 results (figure 3b), with the solution
extending far downstream.

Figure 4b on the other hand, showing results for mZ0.5, KZ10 exhibits a
singularity; indeed, this may be anticipated given the singularity observed at the
outer edge (see figure 2), which serves to drive a singularity across the entire
boundary layer.

To summarize, it appears that all the KZ0 cases fail at either xZgUp0=b with
the formation of the (predicted) stagnation point of the particle velocity on the
wall, or at xs forced by the singularity in the edge conditions.

In the case of mZ0 and 0.1, all cases with KO0 could be computed far
downstream, while the critical value of mZms (as determined from the edge
conditions) provides the upper limit for existence of far-downstream solutions.
The nature of both types of observed singularity is analysed in §5.

Finally, it is worth noting that the breakdowns observed in a number of
results in this section are qualitatively different from those found in the case
of the wall-jet boundary layer by Duck et al. (2004). One fundamental
difference seems to exist between the wall jet and boundary layer results: at
the origin of the wall jet, the transverse particle velocity is equal to the outer
edge transverse velocity component across the entire layer. This non-zero
particle transverse velocity leads to a non-zero value at the wall. The
situation with the boundary layer is quite different. The evolution begins with
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Figure 4. The development of wall values with x for KZ10, b/gZ1. (a) mZ0.1 and (b) mZ0.5.
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zero normal particle velocity on the wall (indeed, this is maintained
downstream if KZ0).

5. Local analysis of boundary-layer singularities

We observed in §3 that the flow at the edge of the boundary layer may develop a
singularity at a particular location downstream of the leading edge. However, as
the numerics in §4 reveal, a singularity can also develop on the wall that prevents
further computation of the boundary-layer solution. In this section, we examine
the two types of singularity in more detail; they represent a failure of the dilute
model and are not related to any pathological behaviour of upe or ae.

(a ) The KZ0 case

Examination of the equation for up, (3.3a), at the wall for KZ0, and assuming
that vpZ0 for all x leads to

Upw Upwx
C

b

g

� �
Z 0; ð5:1Þ

where we have written Upw for Up(yZ0). Consequently, there are two solutions
for up: (i) zero, and (ii) one with a gradient of Kb/g. Following from (4.1),
assuming Up0Z1, we have that

Upw Z 1K
bx

g
; for x!

g

b
: ð5:2Þ

Under the stated assumption that vpZ0 at the surface, the y-derivative of the
vertical momentum equation gives

UpwE
0
wCE2

w C
b

g
Ew Z 0; Ewhðvvp=vyÞyZ0; ð5:3Þ

since vy is always zero on the wall. This equation may be exactly integrated to
give

Ew

EwC b
g

ZC 1K
bx

g

� �
: ð5:4Þ

The quantity C is simply determined by evaluating Ew at the leading edge, and
for all of the wedge flow cases, Ew(0)Z0, making CZ0. Therefore,

Ew Z 0; for xR0; for 0!m!1: ð5:5Þ
Evaluating the a equation at the wall shows that upa is locally constant, hence

aZ
a0

Upw

Z
a0

1Kbx
g

; UpwO0: ð5:6Þ

Therefore, the volume fraction is singular part way along the wall, and so the
model breaks down. This breakdown has been noted by other investigators,
though Wang & Glass (1988) continued their computation through the
singularity. This is not correct, since no continuation beyond such a singularity
is possible without including additional physics into the model equations. It is
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interesting to note that this type of breakdown was not observed in wall jets, the
fundamental difference being again that the vertical particle velocity on the wall
is zero at the leading edge and remains identically zero downstream.

The appropriate local scaling near xsZg/b is

up Z
b

g
ðxsKxÞ ~Upð~hÞ; vp Z

b

g

� �2

ðxsKxÞ ~V pð~hÞ; aZ
~að~hÞ
xsKx

; ~hZ
g

b

y

xsKx
:

ð5:7Þ
Substitution into the particle equations gives

K~U
2
pC ~h ~Up

~Up~h C ~V p
~Up~h Z k~hK ~Up; ~Upð~h ~V p~hK ~V pÞC ~V p

~V p~h ZK~V p; ð5:8Þ

where kZuyðx; yZ0Þ. The particle continuity equation becomes

~hð~a ~UpÞ~h Cð~a ~V pÞ~h Z 0: ð5:9Þ

The behaviour for large ~h is important to the matching process. We find that

~Upwc1~hCc3C1K
k

c1
; ~V pwc2~hC

c2ðc2 C1Þ
c1

; ~h/N; ð5:10Þ

which can be shown to match to the hZO(1) zone.
We have examined the nature of this singularity when the Saffman force, (2.4),

is included, since it has been reported elsewhere (Osiptsov 1988) that it removes
the ‘accumulation’ difficulty. For the small-particle asymptotic theory considered
in this paper, that is, b/N, the Saffman force only slightly modifies the flow
up to the immediate neighbourhood of the singularity. The Saffman force
does become important near the singularity. Specifically, the above analysis near
xZxs is modified by the replacement of (5.8) with

~Upð~h ~V p~hK ~V pÞC ~V p
~V p~h ZK~V pKc

g Re3=4

b3=2
k1=2ðk~hK ~UpÞ: ð5:11Þ

Thus, for sufficiently small particles, bROðRe1=2Þ, the Saffman force slightly
modifies the singularity structure, but does not eliminate the singularity.
Obviously, if the particles are not that small, then b may not be large enough to
satisfy the above criterion, and the Saffman force may well alter the boundary
layer well before any accumulation arises.

(b ) The KO0, mOms case

When KO0, we have seen that the outer flow develops a singularity for mOms

(which is independent of K). In this regime, it is clear from the results of §4 that
this then triggers a singularity across the entire boundary layer. It would appear
(by inspection of both our boundary-layer results and also from (3.9)) that as
x/xs (the point of singularity), the boundary-layer solution takes the form

u Z ûðyÞC/; v Z ðxsKxÞK1=2v̂ðyÞC/; aZ ðxsKxÞK1âðyÞC/;

up Z ûpðyÞC/; vp Z ðxsKxÞK1v̂pðyÞC/:

)
ð5:12Þ
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Substitution of (5.12) into (2.5b), (2.5c) and (2.5e) leads to the conclusion that û,
v̂, ûp and â must be constants, together with

v̂p ZKyûpCconst: ð5:13Þ

Since â is a constant, matching with (3.9) necessitates that âZ1, while for the
fluid it is clear that

ûðyÞZ xms ; v̂ðyÞZ const: ð5:14Þ

Clearly, (5.14) satisfies neither no slip or impermeability, and hence an inner
layer is required (indeed the UhðhZ0Þ distribution in figure 4b is suggestive of
this). This layer is defined by ĥZy=ðxsKxÞ1=2ZOð1Þ, in which

u Z ÛðĥÞC/; v Z ðxsKxÞK1=2V̂ ðĥÞC/; ð5:15Þ
where to leading order, a, vp and up are constant across this layer, and are
OððxsKxÞK1Þ, OððxsKxÞK1Þ and O(1), respectively. The system (determining
primarily the fluid motion) is then sufficient to satisfy the necessary conditions
on the wall (yZ ĥZ0). Note that this predicts an inverse square-root singularity
in the fluid wall-shear distribution Uh(hZ0), in line with the singular behaviour
as observed in figure 4b.

6. Boundary layers with K!0

When gravitational forces act away from the wall, an analysis of the leading-edge
region, x/1, indicates that vpO0 near yZ0. This raises the possibility of shock
formation (see also Foster et al. (2003)). A naive application of the numerical
schemes implemented in the previous sections of this work leads, in this K!0
regime, to inconsistent results (i.e. results that are dependent on resolution
parameters).

It is clear that for K!0, close to the wall characteristics will be directed
outwards from the boundary (since gravitational forcing in the transverse
direction will overcome Stokes drag adjacent to an impermeable wall). Therefore,
any numerical scheme must apply boundary conditions on yZ0 when K!0.
While there are some similarities in this case with the study of Duck et al. (2004),
there is one significant difference, namely vp(yZ0)O0 immediately at xZ0 (in
the wall jet problem, this feature was only found to occur at a finite downstream
location).

Inspection of the system (2.5a)–(2.5e) suggests that a local analysis should
take the form

up ZUp0C/; vp Z xv̂pðĥÞC/; aZ âðĥÞC/; ð6:1Þ

where ĥZy=x2 and the effect of the fluid is relatively benign in this region. The
equations resulting from (6.1) are then

v̂pĥðv̂pK2Up0ĥÞCUp0v̂p ZKK cos q; v̂pâĥK
Up0

2
ĥâĥC âv̂pĥ Z 0: ð6:2Þ

Equations (6.2) are reminiscent of those studied in some detail by Duck et al.
(2004). Considering the first of (6.2), then as ĥ/N, v̂p/KK cos q=Up0. It is
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possible to determine an exact solution for v̂p, namely

K1 Z
v̂p C

K cos q
Up0

� �2
v̂pKUp0ĥC

K cos q
2Up0

; ð6:3Þ

where K1 is a constant. The exact solution consistent with the matching
condition is v̂pZKK cos q=Up0, corresponding to the constant K1Z0. This
solution is not valid near the wall, however. If we impose a boundary condition at
ĥZ0 of v̂pZ0, then this leads to a different value of the constant K1, namely,

K1Z2K cos q=Up0, and for this case, the exact solution (6.3) becomes

v̂pZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2K cos qĥ

p
. These solutions connect at ĥZKK cos q=ð2Up0ÞZ ĥs, giving

a discontinuity in slope for v̂p at this location.
Equation (6.2) can now easily be solved in these two zones. For ĥ! ĥs,

requiring that the solution be bounded results in âh0, i.e. the region is particle
free. In ĥO ĥs, the only solution is âZa0. Thus, a discontinuity in a lies along
the parabola yZKK cos qx2=ð2Up0Þ. Further evidence of the existence of
discontinuities in the a distribution when K!0 is given in appendix A (which
considers the far-downstream regime).

7. Results for the Howarth edge flow

It is relatively straightforward to extend the class of ue(x) from the Falkner–
Skan-type considered previously; here we will restrict our attention to flows of
the linearly retarding type ue(x)Z1Kx, together with Up0Z1. As such, this
represents the dusty analogue to the Howarth (1934) problem.

Figure 5a shows the wall shear stress (of the fluid) distribution for the case
KZ0, g/bZ1, for baZ0 (the clean case), together with ba0Z0.1, 0.2. Flow
reversal, as expected from the classical clean flow, occurs at a downstream
location, but, perhaps unexpectedly an increasing concentration of particles
does (slightly) defer flow separation (accompanied by the Goldstein (1948)
singularity). The corresponding distributions of both ae and a(yZ0) are shown
in figure 5b; these indicate a relatively benign response of the particles. The
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Figure 5. The development of wall and edge values with x for ue(x)Z1Kx for KZ0, b/gZ1.
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corresponding distributions of up(yZ0) are not shown, since these take on the
now familiar linear form, namely upðyZ0ÞZ1Kbx=g (assuming 0!x!g=b). It
is clear that the Stokes drag term in the fluid streamwise momentum equation
slightly delays flow separation; on the wall, clearly uKup!0, and this has an
accelerating effect on the flow (although the pressure gradient appears slightly
more adverse than in the particle-free case).

8. Final comments

In this work, we have shown that, within the confines of the boundary-layer
system, the particle-laden dusty-gas model may predict one of three severe
events, including two types of singularity (in which the dilute nature of the flow
is not preserved) or the formation of shock-like transitions in the particle
distribution. Clearly, the singular phenomena are indicative of a failure of the
dusty-gas model, at least in the context of a dilute suspension. It is the authors’
conjecture that these effects should be ‘observable’ in comparable laboratory-
based experimentation (as areas of significantly increased volume fraction or
particle-free zones). Furthermore, we propose that a return to a more broadly
applicable set of field equations (whatever they may be) in the vicinity of the
breakdown would ameliorate the singular difficulties and allow further down-
stream progression of the solution. Exactly what additional physical influence is
required to be included in order to eliminate the singular structure from the
governing equations remains work in progress, including a weakly non-dilute
model which may lead to a framework suitable for further investigation.

Clearly, our analysis of the boundary-layer flow makes implicit assumptions
regarding the development of an appropriate outer inviscid, irrotational solution
to the dusty-gas model. In this work, we have determined the edge conditions
applied to the boundary-layer solution as part of the solution procedure. We
must recognize, however, that the external flow is in general also non-trivial; this
is in contrast to most previous applications of the dusty-gas model in which the
external flow field is not exposed to any pressure gradients. The distinction is
that, since the pressure gradient only influences the fluid phase and not the
particle phase, a general outer solution for which there is no differential motion
between the particle and fluid phase is only possible when this pressure forcing is
absent. It is, therefore, unsurprising that our analysis demonstrates the presence
of an arbitrary constant Up0 in the leading-edge asymptotics since this constant
is associated with the degree of interphase ‘slip’.

We conclude by noting that, even though inviscid particle-laden flows have
been considered by other authors, and boundary-layer flows have been discussed
extensively by the present authors (and others), relatively little work has been
done towards a synoptic view of dusty-gas flow phenomena in which the two are
both considered formally. As we have noted above, in some circumstances this
process is straightforward, for example in the absence of a free-stream pressure
gradient, but in general a complete description is rather more challenging.

The authors benefited from a number of discussions on this work with Dr David Harris. Much of
this work was performed while the authors were in residence at the Isaac Newton Institute for the
Mathematical Sciences, Cambridge. The referees of the paper also provided a number of useful
comments.

1161Particle suspension boundary layers

Proc. R. Soc. A (2006)

 on September 15, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Appendix A. Large-x structure

Although for a wide choice of parameter values, the boundary-layer flow appears
to suffer a breakdown of one kind or another, it is possible to develop asymptotic
solutions, valid in the far downstream limit, which here we assume do exist.

(a ) KZ0 case

In general, for large x and for KZ0, we might expect the familiar self-similar
form for the fluid, and thus we define the usual similarity variable hZyx(mK1)/2.
Then, the large-x expansions are a generalization of those found in Wang & Glass
(1988),

ðu;upÞwxmðU0ðhÞ;U0ðhÞÞC/ ; ðv;vpÞwxðmK1Þ=2ðV0ðhÞ;V0ðhÞÞC/ ; aZaNC/ ;

(it is straightforward to show that to leading order a takes on its freestream
value aN across the entire layer). The fluid continuity equation is merely

mU0C
mK1

2
hU 0

0CV 0
0 Z 0; ðA 1Þ

while a combination of the two streamwise momentum equations leads to the
classical Falkner–Skan equation, but with a modified ‘viscosity’,

ð1CaNÞ mU 2
0 C

mK1

2
hU0U

0
0 CV0U

0
0Km

� �
ZU 00

0 ; ðA 2Þ

subject to U0ð0ÞZV0ð0ÞZ0, U0ðh/NÞ/1:

(b ) KO0: a constant-thickness layer

In this case, it turns out that the large-x structure of the boundary layer no
longer exhibits the Falkner–Skan-type similarity in the presence of sedimen-
tation. This is because the vertical velocity of the fluid decays downstream as
x(mK1)/2, whereas the Stokes settling speed does not decay and this will dominate
the structure sufficiently far downstream. As a consequence, the large-x
behaviour is given by

u Z xmU0ðY ÞC/; up Z xmUp0ðY Þ; aZaNC/;

v Z ðaNbÞK1=2ðxmK1V0ðY ÞC/Þ; vp Z ðaNbÞK1=2 b

g
Vp0ðY ÞC/

� �
;

ðA 3Þ

where it is convenient to choose a scaled variable, yZY=
ffiffiffiffiffiffiffiffiffi
aNb

p
, and we have

utilized the condition that to leading order aZaN (the far downstream,
freestream value). The parameter that naturally occurs in this analysis is the
solution to the problem for Vp0 is easily evaluated, and is given by Vp0ZKK0,
where K0 hKðg=bÞ2ðaNbÞ1=2 cos q. With this result, solutions for U0, Up0, V0,.
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are found to be

U0 Z 1KeKlY ; where lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C4K02

p
K1

2K0 ;

Up0 Z ðl2K1ÞeKlY C1; V0 ZKmY C
m

l
ð1KeKlY Þ:

9>>>>=
>>>>;

ðA 4Þ

Note that particles slip at the surface, and accumulate there under gravity, that is,

Up0jYZ0 Z l2; Vp0jYZ0 ZKK0: ðA 5Þ

These asymptotic wall values can clearly be seen in the results shown in figure 3b.
It turns out that the volume fraction for this case is double-structured, with a

portion of it decaying to edge values over a much larger scale—namely ywx1Km;
details are not included here for brevity.

(c ) K!0: a shock transition in particle distribution

In this case, there is an important distinction with the KO0 regime; the
ĥZy=x1Km region takes on some significance in these flows. Considering an
ĥZOð1Þ zone, the solution develops as follows:

ðu;upÞZxmðÛ 0ðĥÞ;Ûp0ðĥÞÞC/ ; ðv;vpÞZðV̂ 0ðĥÞ;V̂ p0ðĥÞÞC/ ; aZÂ0ðĥÞC/ :

ðA6Þ

It is immediately apparent that the Stokes drag term dominates the leading
order, yielding

Ûp0 Z Û 0; V̂ p0 Z V̂ 0K
gK�

b
; ðA 7Þ

where K� hK cos q. At leading order, the particle continuity equation reduces to

Û 0ðmK1ÞĥC V̂ 0K
gK�

b

� �
Â

0
0 Z 0; ðA 8Þ

from which we may infer that Â0Zconst:, provided that the multiplying term in
brackets does not possess a zero (we say more regarding this below). Here the
prime notation indicates differentiation with respect to ĥ.

At next order in the (fluid/particle-phase) streamwise momentum equa-
tions, we can eliminate the interphase drag term Û 1KÛp1 to obtain

ð1CgÂ0Þ½V̂ 0Û
0
0KÛ 0V̂

0
0�K

g2K�

b
Â0Û

0
0 Zmð1CgaNÞ; ðA 9Þ

where aNZ Â0ðNÞ is the far downstream, freestream value of a.
Finally, the continuity equation for the fluid can be written as

V̂
0
0CðmK1ÞĥÛ 0

0 CmÛ 0 Z 0: ðA 10Þ
At the edge of the layer, we anticipate a solution to (A 9) in which the

particles are advected with the fluid, but with an additional gravitational settling
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component. Indeed, such a solution is readily found:

Û 0 Z 1; Â0 ZaN; V̂ 0 ZKmĥCd�; ðA 11Þ

where d� is a displacement thickness term. We note that d� is a parameter that
represents ‘history’ effects in that it depends upon the evolution of the boundary
layer from the leading edge. Furthermore, given (A 11), we may determine the
particle flow field from (A 7). The simple outer solution (A 11) must either be
matched to an inner region adjacent to the boundary, or fail at a critical point. In
fact, it is the latter that occurs here, since if we define

fðĥÞZ ðmK1ÞĥÛ 0C V̂ 0; ðA 12Þ

then we can see that there is potential for a critical location to exist at
ĥZ ĥsZd�KgK�=b, where fðĥsÞZgK�=b from (A 8). We, therefore, continue
our analysis with the aim of developing a solution with a shock-like transition in
Â0ðĥÞ at a location ĥZ ĥs, at which point f remains continuous, but is non-
differentiable.

The quantity f is a convenient change of variable and we may rewrite (A 9)
(after using the fluid continuity equation) as,

ð1CgÂ0Þ½mðf0Þ2Kff00�Cg2K�

b
Â0f

00 Zmð1CgaNÞ: ðA 13Þ

The solution for f below the critical shock location ĥs is clearly dependent on
the conditions applied at the boundary for the particle concentration a. However,
we know that Â0 must be constant in this layer, but equally we expect that
gravity will move particles away from the wall. If particles are not replenished
from the wall (i.e. if there is no source of particles at the wall), then the obvious
conclusion is that a particle-free region must develop with Â0Z0; indeed, the
near-leading-edge region, studied in §6 strongly supports this concept. This,
therefore, leads us to consider solutions to (A 13) with Â0Z0, for which we must
solve

mf02Kff00 Zmð1CgaNÞ; ðA 14Þ
which can be integrated to give

df

dĥ
ZKð1CgaNÞ1=2ð1Kc1f

2mÞ1=2; ðA 15Þ

where c1 is an arbitrary constant. Therefore, if one can match the solution in
ĥO ĥs given by (A 11) to the solution (A 15) at ĥs, then this will define a
consistent shock-like transition in the particle distribution. The physical
mechanism of this discontinuous distribution is a simple balance of drag due
to entrainment of the fluid into the boundary layer in competition with
gravitational forcing—the two influences balancing at ĥs.

To match across the shock at ĥs we first note that (A 11) yields fZd�Kĥ for
ĥO ĥs. Secondly, we see that

ĥZK

ðf
0

1

1CgaN
ð1Cc1c

2mÞK1=2 dc; ðA 16Þ
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for ĥ! ĥs. Finally, since fðĥsÞZgK�=b, we can determine c1 implicitly through
the integral condition

d�K
gK�

b
Z

K1

1CgaN

ðgK�=b

0
ð1Cc1c

2mÞK1=2 dc: ðA 17Þ

As an aside, we note that when mZ0 there is some degeneracy and the
coefficient c1 is readily determined to be

c1 Z 1K
gK�

d�bKgK�

� �2 1

1CgaN
: ðA 18Þ

Since f0ZKÛ 0, we can see that (for ms0), the resulting value of Û 0ðĥZ0Þ is
given by

Û 0ðĥZ 0ÞZ ð1CgaNÞ1=2; ðA 19Þ
which will not satisfy no-slip (although V̂ ðĥZ0ÞZ0). To reduce the fluid
velocity to zero at the boundary, we require an inner layer spanned by hZ
y=xð1KmÞ=2 (again), in which the scalings are

u Z xmU �
0 ðhÞC/; v Z xðmK1Þ=2V �

0 ðhÞC/; ðA 20Þ
while vpZKgK�=b and upZxmÛ 0ðĥZ0Þ are both constant across this layer
(a is, of course, zero).

The equations determining the fluid motion in this inner region are of the
Falkner–Skan type, i.e.

mU �
0 K

1Km

2
hU �

0hCV �
0h Z 0; ðA 21Þ

U �
0 mU �

0 K
1Km

2
hU �

0h

� �
CV �

0U
�
0h ZU �

0hhCmð1CaNbÞ; ðA 22Þ

the requirement being that U �
0 ðh/NÞ matches to (A 19) (or unity when mZ0),

together with U �
0 ðhZ0ÞZV �

0 ðhZ0ÞZ0. Given the particle-free nature of this
zone, it is perhaps hardly surprising that the flow takes on a form closely related
to the classical (clean) form. Solution of the inner flow then closes the problem.
Indeed, the Falkner–Skan-type behaviour in the inner region can be anticipated
since the flow is essentially a clean (that is, particle-free) problem there. We
conclude by noting that this analysis implicitly assumes that m!1/2; given the
breakdown/singularity witnessed earlier in the paper, if mOms!1/2, this is
unlikely to be a significant restriction.
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