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We consider a viscous incompressible fluid flow driven between two parallel plates
by a constant pressure gradient. The flow is at a finite Reynolds number, with an
O(1) disturbance in the form of a travelling wave. A phase equation approach is
used to discuss the evolution of slowly varying fully nonlinear two-dimensional wave-
trains. We consider uniform wavetrains in detail, showing that the development of
a wavenumber perturbation is governed by the Burgers equation in most cases. The
wavenumber perturbation theory, constructed by using the phase equation approach
for a uniform wavetrain, is shown to be distinct from an amplitude perturbation
expansion about the periodic flow. In fact, we show that the amplitude equation
contains only linear terms and is simply the heat equation. We review, briefly, the
well-known dynamics of the Burgers equation, which imply that both shock struc-
tures and finite-time singularities of the wavenumber perturbation can occur with
respect to the slow scales. Numerical computations have been performed to iden-
tify areas of the {wavenumber, Reynolds number, energy} neutral surface for which
each of these possibilities can occur. We note that the evolution equations will break
down under certain circumstances, in particular for a weakly nonlinear secondary
flow. Finally, we extend the theory to three dimensions and discuss the limit of a
weak spanwise dependence for uniform wavetrains, showing that two functions are
required to describe the evolution. These unknowns are a phase and a pressure func-
tion which satisfy a pair of linearly coupled partial differential equations. The results
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obtained from applying the same analysis to the fully three-dimensional problem are
included as an appendix.

Keywords: parallel shear flow; nonlinear stability; phase equation methods

1. Introduction

Fully nonlinear travelling wave solutions in plane Poiseuille flow (PPF) have been
discussed by many authors in recent years (Zahn et al . 1974; Herbert 1976; Pugh
& Saffman 1988), with emphasis placed upon the secondary instability problem.
Instability of the finite-amplitude two-dimensional periodic flow to three-dimensional
infinitesimal disturbances has been put forward traditionally as an explanation of
transition. Orszag & Patera (1983) have also suggested that, even at Reynolds num-
bers below the subcritical minimum for nonlinear two-dimensional solutions, the
time-scale for ultimate decay of the disturbance is sufficiently long for a small three-
dimensional perturbation to grow strongly.

Subsequent work on superharmonic instability by Pugh & Saffman (1988) has
shown that a more complex structure is to be expected than a simple stability tran-
sition at the Reynolds number limit point of the neutral surface. They show that
parametrization of the problem is important and that bifurcations to quasi-periodic
flows exist at points on the upper branch of the neutral surface, leaving open the
possibility of such finite-amplitude solutions existing at a Reynolds number lower
than the subcritical minimum for the periodic flow.

It should be noted that other approaches have been discussed that do not rely
on the existence of finite-amplitude two-dimensional travelling waves. Although the
possibility of resonant growth caused by linear mechanisms has been recognized for
some time, it is only through recent work (Gustavsson 1981, 1991; Gustavsson &
Hultgren 1980; Butler & Farrell 1992; Trefethen et al . 1992) concerning the initial
value approach that the large amplification involved in three-dimensional problems
has been revealed. The term ‘bypass’ has been attached to these methods since they
do not follow the more traditional idea of transition arising from two-dimensional
Tollmien–Schlichting waves with three-dimensional effects appearing only at a sec-
ondary instability stage.

The predictions of a linear stability analysis applied to plane Poiseuille flow have
been confirmed experimentally by Nishioka et al . (1975). The experiments of Nishioka
et al . followed similar discussions of flows in rectangular channels (see, for example,
Kao & Park 1970; Davies & White 1928), however, as shown by Davis & White, the
aspect ratio can have a significant effect on the critical Reynolds numbers obtained.
By using a larger width-to-depth ratio (27.4 was used, whereas Kao & Park used a
ratio of 8), together with reducing background noise to very low levels, Nishioka et al .
managed to obtain good agreement between experimental data and the theoretically
predicted critical Reynolds number of approximately 6000. In fact, Nishioka et al .
note that it was possible to maintain a laminar flow in the test section for Reynolds
numbers of up to 8000; however, this must obviously be interpreted in terms of the
length of the channel. If a larger channel were used in the experiments, then these
growing modes would eventually attain an amplitude above the threshold required
to trigger transition.
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All the experiments concerning plane Poiseuille flow confirm its subcritical nature,
with transition from a laminar flow, in a sufficiently ‘noisy’ environment, being found
at much lower Reynolds numbers than are predicted by a linear stability analysis
(Alavyoon et al . (1986) give a value of 1100, based on centreline velocity and half-
channel width). As noted above, the subcritical transition from a laminar state has
been discussed theoretically both in terms of the secondary instability problem for
nonlinear two-dimensional waves and for bypass mechanisms, which avoid the pri-
mary instability.

Returning to the experiments of Nishioka et al., which introduced an artificial dis-
turbance via a vibrating ribbon technique into an otherwise relatively noise-free flow,
the growth of a two-dimensional instability wave to a threshold amplitude was noted
before transition. In a later investigation, Kozlov & Ramazanov (1984) used a sim-
ilar experimental set-up to investigate the effects of three-dimensional disturbances
on the two-dimensional flow. They observed that when the two-dimensional wave
had attained an amplitude above some threshold value it went through a breakdown
process that involved three-dimensional structures referred to as Λ-vortices. Earlier,
Klebanoff et al . (1962) also discussed this process in the context of three-dimensional
disturbances to a Tollmien–Schlichting wave field in a flat-plate boundary layer.

In this discussion we return to the finite-amplitude two-dimensional travelling
wave solutions described at the beginning of this section, and subsequently develop
an evolution equation for a phase instability of the O(1) flow. Since these nonlinear
solutions are used frequently in some areas of both theory and computation, it seems
sensible to try and discover something of their stability and evolution. We show, in
fact, that uniform wavetrains will not be observed under certain classes of initial con-
dition as they are susceptible to slow scale effects, with the wavenumber developing
both singularities and shock structures after a finite time in the slow scale.

The method we use to determine the evolution equation is based upon the phase
equation technique applied by numerous authors to Bénard convection problems with
O(1) amplitudes (for example, Newell et al . 1993). These same methods have been
applied to wave problems by Howard & Kopell (1977), Whitham (1974), subsequently
applied explicitly to the Ginzburg–Landau equation by Bernoff (1988) and used in
an investigation of boundary layer instability theory by Hall (1995).

A detailed discussion of the phase equation method is given by Hall (1995) and
Bernoff (1988), and is not repeated here. The essential idea is that we have a finite-
amplitude wavetrain solution, which is locally periodic in space and time, allowing
wavenumber and frequency to be functions varying on appropriate slow scales. The
resulting equations of motion can then be rewritten in terms of the new scales and a
phase function that is related to the wavenumber and frequency, through which it also
satisfies a conservation equation. An expansion in terms of the slow-scale parameter
will now yield a leading-order system that is a nonlinear eigenvalue problem. This
relationship determines the local frequency of the wavetrain as a function of local
wavenumber, Reynolds number (and indirectly amplitude), yielding both supercrit-
ical and subcritical equilibria for PPF. The next order problem will then provide a
linear inhomogeneous system that determines the frequency correction term through
a solvability condition; this technique also allows for continuation to higher orders.
Now, since the wavetrain evolves according to the phase-conservation equation, we
can, by expanding appropriately, give a slow-scale asymptotic approximation to the
evolution equation.
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In § 2 of this discussion, the above technique is applied explicitly to the finite
Reynolds number two-dimensional PPF problem. In § 2 a we discuss the implica-
tions of the phase equation theory when applied to the stability of a uniform two-
dimensional wavetrain. We show that the stability of a small wavenumber perturba-
tion is governed by the Burgers equation,

∆τ +∆∆ζ = ±∆ζζ , (1.1)

for O(1) problems that correspond to distinct points on either the upper or lower
branch of the neutral surface and away from the linear neutral curve. In § 3 we
discuss the stability of the O(1) flow to an amplitude perturbation, showing that,
for these length-scales, nonlinear terms are not introduced and that the amplitude
equation is simply the heat transfer equation. Section 4 provides a short description of
the numerical methods involved in the stability calculations, presenting results that
are consistent with those of other authors (Herbert 1976; Pugh & Saffman 1988).
Computational results, which show the behaviour of the viscous diffusion term from
the Burgers equation, are presented for differing leading-order problems. Section 5
returns to the analysis of a uniform wavetrain and briefly discusses how the theory
breaks down for weakly nonlinear secondary flow solutions. In § 6 we redevelop the
phase equation theory for a three-dimensional problem and consider the stability of
wavenumber perturbations in the limit of a weak spanwise dependence. Finally, in
§ 7 we discuss the implications and future extensions of the work.

2. Formulation of the phase equation approach

We wish to consider a finite-amplitude solution to the plane Poiseuille flow (PPF)
problem, in the form of a travelling wave, then allow for a slow modulation on the
new scales,

X = δx and T = δt. (2.1)

We now use the methods presented in Howard & Kopell (1977), Bernoff (1988),
and applied to asymptotic suction boundary layer flow by Hall (1995). This analysis
follows closely the finite Reynolds number case of Hall (1995), except for a few
differences associated with a pressure eigenfunction term (discussed later). We first
introduce a phase function, Θ(X,T ) = δθ(x, t), which allows a definition of the local
frequency and wavenumber as

α =
∂Θ

∂X
, Ω = −∂Θ

∂T
, (2.2)

where α = α(X,T ) and Ω = Ω(X,T ) are allowed to vary on the slow scales. Thus
the partial derivatives transform as

∂

∂x
→ α

∂

∂θ
+ δ

∂

∂X
,

∂

∂t
→ −Ω ∂

∂θ
+ δ

∂

∂T
, (2.3)

and a conservation of phase condition must be satisfied,
∂α

∂T
+
∂Ω

∂X
= 0. (2.4)

We can now develop a perturbation scheme about the fully nonlinear leading-order
solution by introducing a slow scale expansion of the stream function,

ψ = ψ̂0 + δψ1 + · · · , (2.5)
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which forces a similar expansion for the frequency,

Ω = Ω0 + δΩ1 + · · · . (2.6)

Here ψ̂0 = Ψ̄ + ψ0, with Ψ̄ = y − 1
3y

3 the basic flow potential, plus a leading-order
spatially periodic flow. We shall use the vorticity equation formulation to describe
the flow,

∂(∇2ψ)
∂t

+
∂(∇2ψ,ψ)
∂(x, y)

− 1
Re
∇4ψ = 0, (2.7)

with a Reynolds number, Re, defined as Ū∗h/ν, where Ū∗ is the centerline velocity,
2h the plate separation and ν the kinematic viscosity. Thus at leading order, using
the above expansions, we obtain

−Ω0∇̂2ψ̂0θ + αψ̂0y∇̂2ψ̂0θ − αψ̂0θ∇̂2ψ̂0y − (1/Re)∇̂4ψ̂0 = 0, (2.8)

with subscripts {θ, y, . . . } denoting the respective derivatives, where it is unambigu-
ous to do so, and

∇̂2 ≡ α2 ∂
2

∂θ2 +
∂2

∂y2 . (2.9)

The boundary conditions are simply impermeability and no-slip at the parallel
boundaries. In terms of the stream function (at this order) this gives

ψ̂0θ = ψ̂0y = 0 at y = ±1. (2.10)

Similar situations have been discussed previously by Herbert (1976) and Pugh &
Saffman (1988), and this nonlinear eigenvalue problem can be solved by using the
same numerical techniques. Here we have an eigenrelation

Ω0 = Ω0(α,Re), (2.11)

which defines a ‘neutral surface’ in {α,Re, amplitude} parameter space. A schematic
representation of the neutral surface is shown in figure 1, in which E denotes some
energy measure of the two-dimensional wave. We shall return to the problem of
solving (2.8) numerically in § 4 a, where we shall present some cross-sections of the
form illustrated in figure 1.

Now at next order, after some rearrangement, we obtain

L{ψ1} =
[
Ω0(2αψ̂0θθα+ ψ̂0θθ)+

∂Ω0

∂α

∂∇̂2ψ̂0

∂α
+α

∂(ψ̂0, 2αψ̂0θα + ψ̂0θ)
∂(θ, y)

+
∂(ψ̂0, ∇̂2ψ̂0)
∂(α, y)

+
1
Re

(4α∇̂2ψ̂0θα + 4α2ψ̂0θθθ + 2∇̂2ψ̂0θ)
]
∂α

∂X
+Ω1∇̂2ψ̂0θ, (2.12)

with boundary conditions ψ1y = ψ1θ = 0 at y = ±1. To obtain the above form,
(2.12), we have introduced the operator L defined as

L ≡ −Ω0∇̂2 ∂

∂θ
+ αψ̂0y∇̂2 ∂

∂θ
+ α∇̂2ψ̂0θ

∂

∂y
− αψ̂0θ∇̂2 ∂

∂y
− α∇̂2ψ̂0y

∂

∂θ
− 1
Re
∇̂4,

(2.13)

and the ∂/∂T term has been replaced by using the conservation of phase as
∂

∂T
→ − ∂

∂α
(Ω0 + δΩ1 + · · · ) ∂α

∂X

∂

∂α
. (2.14)
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Re

E

α

Re~2900

Re~5772

Linear neutral
curve 

Increasing

Figure 1. A schematic representation of the neutral surface.

We now consider the mean flow, which from the Navier–Stokes equation is governed
by

1
Re

∂2u00

∂y2 =
∞∑
n=1

(
v0n

∂u
(c)
0n

∂y
+ v

(c)
0n
∂u0n

∂y

)
+
∂q−1

∂X
. (2.15)

Here we have expanded the velocity field and pressure as

u = û0(X,T, θ, y) + δu1(X,T, θ, y) + · · · , (2.16)

p = [GX + q−1(X,T )]δ−1 + [p0(X,T, θ, y) + q0(X,T )] + · · · , (2.17)

with

û0 = (Ū , 0)T + u0(X,T, θ, y), u0 = (u00, v00)T, (2.18)

v00 ≡ 0 from continuity, and

u0 = u00 +
∞∑
n=1

{u0neinθ + u(c)
0n e−inθ}, u0n = (u0n, v0n)T. (2.19)

In the above expansions, we have used Ū = 1−y2 to denote the non-dimensionalized
basic flow, G = −2/Re is the basic driving pressure gradient and the superscript
‘(c)’ denotes a complex conjugation. At next order we obtain

1
Re

∂2u10

∂y2 =
∂p00

∂X
− ∂Ω0

∂α

∂u00

∂α
αX + Ū

∂u00

∂X
+
∂Ū

∂y
v10

+
∞∑

n=−∞

(
u0n

∂u
(c)
0n

∂X
+ v0n

∂u
(c)
1n

∂y
+ v1n

∂u
(c)
0n

∂y

)
+
∂q0

∂X
, (2.20)
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where p00 is introduced from the expansion

p0 = p00 +
∞∑
n=1

{p0neinθ + p
(c)
0n e−inθ}, (2.21)

and, from the O(δ0) y momentum equation, satisfies

∂p00

∂y
= −

∞∑
n=−∞

∂v0nv
(c)
0n

∂y
. (2.22)

In (2.20) we have also introduced

u1 = u10 +
∞∑
n=1

{u1neinθ + u(c)
1n e−inθ}, u1n = (u1n, v1n)T, (2.23)

and the summation terms in (2.20) and (2.22) are performed with negative subscripts
denoting a complex conjugation.

The equation of continuity at this order, O(δ), is

α
∂u1

∂θ
+
∂u0

∂X
+
∂v1

∂y
= 0, (2.24)

which, when considering the mean-flow terms only, reduces to

∂v10

∂y
= −∂u00

∂X
, (2.25)

a first-order equation for the mean-flow correction to v, required to satisfy the imper-
meability conditions at both walls. This difficulty was anticipated earlier and is
resolved by the introduction of a further, slow scale-dependent, pressure expansion

q−1(X,T )δ−1 + q0(X,T ) + · · · , (2.26)

producing the extra term ∂q−1/∂X in (2.15) which is chosen to satisfy (2.25). Thus,
for impermeability at both boundaries, we must satisfy∫ +1

−1

∂u00

∂X
dy = 0, (2.27)

which fixes the streamwise flux through the channel and hence determines q−1 as
a function of X at given T . This is equivalent to solving the vorticity equation for
the mean-flow correction with the same boundary conditions ψ00 = ∂ψ00/∂y = 0 at
y = ±1, where ψ00 is the part of the stream function having zero mean with respect
to the phase, θ.

Now we have an O(δ0) problem that can be solved numerically to give Ω0(α,Re)
and an expansion in terms of δ giving a further system (2.12), which is used to
compute Ω1 at a given neutral surface point. The homogeneous form of (2.12) is
solved by ψ0θ (corresponding to the existence of a translationally invariant solution,
since any arbitrary constant may be added to the phase) and so Ω1 is determined
by a solvability condition at O(δ). The form of (2.12) is

α
∂

∂θ
(Aq) +

∂

∂y
(Bq) + Cq = H, (2.28)
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so premultiplying by the adjoint vector, rT = (r1, . . . , r6), and integrating by parts
gives

−α ∂

∂θ
(ATr)− ∂

∂y
(BTr) + CTr = 0 (2.29)

as the adjoint equation for the homogeneous form of (2.28), with

q = (ψ1, αψ1θ, ψ1y, ∇̂2ψ1, α∇̂2ψ1θ, ∇̂2ψ1y)T, (2.30)

A =


1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 −(1/Re) 0

 , (2.31)

B =


0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −(1/Re)

 (2.32)

and

C =


0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 −∇̂2ψ̂0y α∇̂2ψ̂0θ 0 ψ̂0y − (Ω0/α) −αψ̂0θ

 . (2.33)

The boundary conditions are also determined by the above process and are easily
shown to be

r5 = r6 = 0 at y = ±1, (2.34)

plus a periodicity condition. Thus the solvability condition is∫ 2π

θ=0

∫ +1

y=−1
r6H6 dy dθ = 0, (2.35)

giving

Ω1 =
∂α

∂X
Φ(α), (2.36)

where

Φ(α) =
{∫ 2π

θ=0

∫ +1

y=−1
M(θ, y)r6 dy dθ

}{∫ 2π

θ=0

∫ +1

y=−1
−r6∇̂2ψ0θ dy dθ

}−1

, (2.37)

with M used to denote the term in the square brackets in equation (2.12) and
H = (0, . . . , 0, H6)T.
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Given Ω1 we can now write down the phase conservation condition, up to O(δ),
in the form

∂α

∂T
+
∂Ω0

∂α

∂α

∂X
= δ

∂

∂X
(−Ω1) + · · · . (2.38)

This is an evolution equation for α = α(X,T ), which we could in principle continue
to any order through this expansion scheme; rather than solving this directly, we
shall restrict our attention to a somewhat simpler problem.

(a) Stability of uniform wavetrains

Here we wish to discuss the stability of a fully nonlinear uniform wavetrain to
a small slow-scale wavenumber perturbation. Hence, following the above expansion
scheme, we obtain an O(δ0) problem with a phase function of leading-order form,

θ0 = α0x−Ω0(α0)t, (2.39)

where {α0, Re} defines a point upon the neutral surface at O(1) disturbance energy,
with associated frequency Ω0. If we now perturb the wavenumber of this uniform
solution with a slowly varying function ∆,

α = α0 +∆(X,T ), (2.40)

and perform the above analysis, the evolution equation reduces to

∂

∂T
∆(X,T ) +

∂Ω0

∂α

∂

∂X
∆(X,T ) + δ

∂Ω1

∂X
+ δ2 ∂Ω2

∂X
+ · · · = 0. (2.41)

Now we introduce a Taylor series expansion for Ωi about the uniform solution, and
a transformation of the streamwise coordinate to a new frame of reference, moving
with speed Ω′0(α0), to obtain

η
∂∆

∂τ
+
∂2Ω0(α0)
∂α2 ∆

∂∆

∂ξ
+ δΦ(α0)

∂2∆

∂ξ2 = O

(
δ∆2 ∂∆

∂ξ
, δ∆

∂2∆

∂ξ2 , δ
∂∆2

∂ξ

)
. (2.42)

Here we have defined τ , ξ and Φ(α) by

τ = ηT, (2.43)

ξ = X −Ω′0(α0)T, (2.44)

so that
∂

∂T
→ η

∂

∂τ
−Ω′0(α0)

∂

∂ξ
, (2.45)

∂

∂X
→ ∂

∂ξ
. (2.46)

We therefore obtain a leading-order balance for η = δ and ∆ ∼ O(δ).
A rescaling of ∆̄ = Ω′′0 (α0)∆ will reduce this evolution equation to the standard

form for the Burgers equation, namely (after dropping the bar notation)

∆τ +∆∆ξ = −Φ(α0)∆ξξ, (2.47)

which has well-known properties. This approach again follows that given by both Hall
(1995) and Bernoff (1988), where the Burgers equation has been derived by applying

Phil. Trans. R. Soc. Lond. A (1998)

 on September 15, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


2422 R. E. Hewitt and P. Hall

this technique to both the asymptotic suction boundary layer and the Ginzburg–
Landau equation. Whitham (1974) has discussed the dynamics of this equation in
detail; it has an exact solution via the Cole–Hopf transformation,

∆ = 2Φ(α0)
∂

∂ξ
log(Λ), (2.48)

which removes the nonlinear term, reducing the evolution equation to the form of
the heat diffusion equation,

Λτ = −Φ(α0)Λξξ + C(τ)Λ, (2.49)

where C(τ) is set to be identically zero since this merely corresponds to a scaling
of the dependent variable. Now for the initial value problem, with known ∆(ξ, 0) =
F (ξ), it is possible to obtain the analytical solution

Λ(ξ, τ) =
1√−4πΦ(α0)τ

∫ +∞

−∞
exp

{
(ξ − η)2

4Φ(α0)τ
+

1
2Φ(α0)

∫ η

0
F (η̄) dη̄

}
dη, (2.50)

through an application of Laplace transform methods. Therefore the solution is

∆(ξ, τ) =
{∫ +∞

−∞

ξ − η
τ

eD/[2Φ(α0)] dη
}{∫ +∞

−∞
eD/[2Φ(α0)] dη

}−1

, (2.51)

where

D =
∫ η

0
F (η̄) dη̄ +

(ξ − η)2

2t
. (2.52)

This can support both shock structures and singularities at finite times. For a
positive diffusive term on the right of (2.47), Φ(α0) < 0, we have a bounded solution
that will decay for a localized/periodic disturbance. For a negative right-hand side,
Φ(α0) > 0, the solution is diffusively unstable and will become singular at finite time,
indicating that the slow variation assumption is no longer appropriate and a return
to the full equations of motion is required. Weak shock structures are discussed by
Bernoff (1988) who notes that for a small monotonic wavenumber variation such that

lim
x→−∞α = α− (2.53)

and

lim
x→+∞α = α+, (2.54)

the Burgers equation applies as a leading-order form for the evolution equation if

∆α = α+ − α− � 1. (2.55)

Here we also require that the unmodulated wavetrain corresponds to a distinct point
on either the upper or lower branch of the neutral surface at O(1) amplitude. Now
this wavenumber variation will eventually become concentrated into a weak shock
structure of width O(1/∆α) in the unscaled streamwise coordinate if

Ω′0(α0)(α+ − α−) < 0, (2.56)

moving with speed

c = (Ω(α+)−Ω(α−))/∆α (2.57)

Phil. Trans. R. Soc. Lond. A (1998)

 on September 15, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Evolution of finite-amplitude wavetrains in plane channel flow 2423

(a discretized form of the group velocity). If this variation in wavenumber (∆α)
increases, then the slow-scale assumptions are eventually lost (as with the finite-
time singularity case) and the evolution of the wave system is governed by the full
equations, namely Navier–Stokes.

In this case (stability of uniform wavetrains) we should also note that the leading-
order problem is simplified since there is no slow-scale dependency for the wavenum-
ber. Thus the effect of the extra pressure term ∂q−1/∂X (now a constant) is to induce
an additional parabolic velocity profile into the mean-flow correction, and this cor-
responds to a scaling of the Reynolds number at fixed amplitude/wavenumber. So
the condition (2.27), which fixes the flux through the channel, effectively determines
a unique parametrization of the problem (as discussed by Pugh & Saffman (1988))
in a self-consistent manner.

3. An amplitude perturbation approach

We now show how the phase equation method described previously is distinct from
a more typical amplitude perturbation approach. In this method we solve the same
leading-order problem for the uniform wavetrain, but it is now perturbed by an
eigenfunction with a slowly varying amplitude B = B(X,T ). Again we introduce the
slow scales,

X = δx, (3.1)

and

T = δt, (3.2)

together with

X̂ = (X − cgT ), (3.3)

a new moving coordinate system, and a further time-scale,

T̂ = δT. (3.4)

This slower time-scale is known from the previous section but could otherwise be
determined from the final solvability condition. Here cg is a group velocity and, given
values for α and Ω, we can expand in terms of δ and a phase variable θ = αx−Ωt.
Now, seeking a solution analogous to that in Hall (1995), we expand the stream
function as

ψ = ψ̂0 + δψ1 + · · · , (3.5)

where

ψ̂0 = Ψ̄ + ψ0, (3.6)

ψ1 = B(X̂, T̂ )α
∂ψ0

∂θ
, (3.7)

with Ψ̄ corresponding to the basic parallel flow, and

ψn =
[B(X̂, T̂ )α]n

n!
∂nψ0

∂θn
+ ψ̃n, n > 2. (3.8)
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We now return to the vorticity equation (2.7) and substitute the above expansions
along with

∂

∂x
→ α

∂

∂θ
+ δ

∂

∂X̂
, (3.9)

∂

∂t
→ −Ω ∂

∂θ
− δcg ∂

∂X̂
+ δ2 ∂

∂T̂
, (3.10)

∇̂2 ≡ ∂2

∂y2 + α2 ∂
2

∂θ2 , (3.11)

to give the following leading order the form of the vorticity equation:

O(δ0) : −Ω∇̂2ψ̂0θ + αψ̂0y∇̂2ψ̂0θ − αψ̂0θ∇̂2ψ̂0y − (1/Re)∇̂4ψ̂0 = 0. (3.12)

At next order we obtain

O(δ) : −Ω∇̂2ψ1θ + αψ̂0y∇̂2ψ1θ + αψ1y∇̂2ψ̂0θ

− αψ̂0θ∇̂2ψ1y − αψ1θ∇̂2ψ̂0y − (1/Re)∇̂4ψ1 = 0, (3.13)

with solution (3.7), which is an amplitude perturbation of the underlying periodic
flow; in this formulation ψ0 is independent of the slow scales X̂, T̂ . The required group
velocity is now determined from the next-order system, which can be rearranged more
clearly as

LO(δ){ψ̃2} = α[2αΩψ̂0θθθ + cg∇̂2ψ̂0θ − ψ̂0y(2α2ψ̂0θθθ + ∇̂2ψ̂0θ)

+ ψ̂0θ(2α2ψ̂0θθy + ∇̂2ψ̂0y) + (4α/Re)∇̂2ψ̂0θθ]BX̂ , (3.14)

with the LO(δ) operator defined by the O(δ) equation, (3.13), and once terms pro-
portional to B2 have been eliminated by taking ∂/∂θ of (3.12). We observe that
ψ̃2 = αBX̂ψ0α and, as expected, cg corresponds to ∂Ω0(α)/∂α in the phase equation
approach; this follows by taking ∂/∂α of (3.12). Note that an additional multiple of
the homogeneous solution to ψ̃2 will not alter the solvability condition at next order,
but will contribute to an amplitude equation at higher order.

We also must remember that the additional pressure term (q−1, discussed in § 2) is
still required in the leading-order mean-flow problem. Obviously, a similar pressure
term, ∂q−1/∂α, is necessary at O(δ2), but it is not until O(δ3) that the condition
determining q−1 is obtained. Now continuity of mass, at O(δ3), requires the same
constant mass-flow condition to be satisfied for impermeability of the boundaries.
Thus we determine q−1, appearing in the leading-order problem, in the same manner
as discussed in the phase equation approach.

The same process can be repeated for the problem at next order, which becomes

LO(δ){ψ̃3} = BBX̂{K(θ, y)}+BT̂ {−α∇̂2ψ0θ}+BX̂X̂{M(θ, y)α}, (3.15)

after again eliminating the B3 terms by taking ∂2/∂θ2 of (3.12). The M expression,
in (3.15), is as defined previously in the phase equation analysis with {Ω0, ∂αΩ0}
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replaced by {Ω, cg}, and K is given by

K = 2α3Ωψ0θθθθ + cgα
2∇̂2ψ0θθ + 2α4 ∂(ψ0, ψ0θθθ)

∂(θ, y)

+ α2 ∂(ψ0, ∇̂2ψ0θ)
∂(θ, y)

+ α3 ∂(ψ0θ, ∇̂2ψ0α)
∂(θ, y)

+ 2α4 ∂(ψ0θ, ψ0θθ)
∂(θ, y)

+ α2 ∂(ψ0θ, ∇̂2ψ0)
∂(θ, y)

+ α3 ∂(ψ0α, ∇̂2ψ0θ)
∂(θ, y)

− 1
Re
∇̂2ψ0θθθ. (3.16)

Although at first sight (3.15) appears to be the Burgers equation, reproduced
through an amplitude perturbation approach, it does in fact reduce to a simpler
form once we have observed that a particular solution is available to remove the
nonlinear term from the solvability condition,

LO(δ)

{
α2 ∂ψ0α

∂θ

}
= K(θ, y). (3.17)

Similarly by an inductive method we can show that a rescaling does not reintroduce
nonlinear terms (which will be of the form Bn∂B/∂X̂) into the amplitude equation,
since we can develop a general particular solution,

αn+1

n!
∂nψ0α

∂θn
. (3.18)

If we now follow the same method outlined in § 2, we can obtain a solvability
condition at this order, namely

BT̂

∫
y

∫
θ

−r6∇̂2ψ0θ dθ dy +BX̂X̂

∫
y

∫
θ

M(θ, y)r6 dθ dy = 0. (3.19)

This is the heat transfer equation; the solution is characterized by the sign of the
diffusive term, given by{∫ +1

y=−1

∫ 2π

θ=0
M(θ, y)r6 dθ dy

}{∫ +1

y=−1

∫ 2π

θ=0
−r6∇̂2ψ̂0θ dθdy

}−1

≡ Φ(α) (3.20)

in the previous notation. So we note that these amplitude perturbations are of less
interest than the corresponding phase instabilities; since they are governed by the
heat equation, the solutions will simply decay exponentially to zero or grow becom-
ing singular in a finite time. Thus we have stable decaying solutions for Φ(α) < 0
but when Φ(α) > 0 we must at some stage return to the full evolution equations
to determine the development as higher-order spatial and temporal derivatives are
reintroduced.

4. Numerical methods

(a) The leading-order problem

In solving the leading-order form of the vorticity equation we look for solutions
that expand as

ψ̂0 = Ψ̄ +
∞∑

n=−∞
ψ0neinθ, (4.1)
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where ψ̂0 is the leading-order term in the expansion of the stream function ψ, (2.5),
and Ū ≡ DΨ̄ . The vorticity equation (2.7) reduces, after substitution of the above
form, to

1
Re

(D2 − n2α2)2ψ0n − iαn
{[
Ū − Ω0

α

]
(D2 − n2α2)ψ0n − ψ0nD

2Ū

}
+ iα

∞∑
m=−∞

{
(n−m)ψ0n−m(D3−m2α2D)ψ0m−mDψ0n−m(D2−m2α2)ψ0m

}
= 0,

(4.2)

for n = 0,±1,±2, . . . with boundary conditions ψ0n = Dψ0n = 0, where D ≡ d/dy.
Now we solve this with a truncation of the Fourier modes and a Chebyshev expansion
in the y direction for each harmonic,

ψ0n(y) = 1
2an0 +

∞∑
r=1

anrTr(y), (4.3)

along with Ū = 1
2(1− T2). This formulation has been applied previously by Herbert

(1976) to plane Poiseuille flow with a constant pressure gradient rather than the
constant mass-flux condition we apply in this case.

If the harmonics are truncated at Nh, and the Chebyshev series at Nc, this yields
a numerical problem that can be solved by using Lanczo’s τ method with Nh(Nc +
7) nonlinear equations plus a coupled mean-flow problem. We also note that the
computational task can be simplified by assuming the symmetry condition,

ψn(y) = (−1)n+1ψn(−y), (4.4)

together with requiring that the solution to (4.2) is real, so that

ψ−n = ψ
(c)
+n. (4.5)

The τ method is essentially equivalent to determining the higher Chebyshev coef-
ficients through the boundary conditions; however, we can only replace two of the
dynamical equations with boundary conditions, and therefore have to retain at least
one τ element. Various methods were investigated for the solution of these simul-
taneous nonlinear equations, and finally a Newton iteration technique was found to
provide the best convergence over large amplitude ranges. We write the nonlinear
system of equations as

f(x) = 0, (4.6)

where

x = (Ω0, a11, a12, . . . , a1Nc , a20, a21, . . . , a2Nc , aNh0, . . . , aNhNc)T, (4.7)

and at each iteration level solve

Jz = −f(xk), (4.8)

to give

xk+1 = xk + z, (4.9)
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Figure 2. A cross-section of the neutral surface at α = 1.08, with Nh = 1, . . . , 4.

where J is the Jacobian

J ≡



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xm

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xm
...

...
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xm


. (4.10)

The number of unknowns in this solution procedure can be effectively halved by
applying the symmetry assumptions discussed above. From this nonlinear eigenvalue
problem we determine the relationship between Ω0 and {α,Re}. To do this we specify
an amplitude of disturbance by choosing a value for the first Chebyshev coefficient,
a10, in the expansion of the fundamental mode. Without loss of generality, we can
assume that this amplitude measure is real since this corresponds to a unique deter-
mination of the phase. Here the initial guess for a solution of the system, at a general
neutral surface point, is derived from an interpolation of previous ‘nearby’ solutions.
Since a value for one of the Chebyshev coefficients is specified we must replace it by
some other unknown in the Newton iteration scheme, typically the frequency.

As discussed in § 2, we must also iterate upon the additional pressure constant,
∂q−1/∂X in the mean-flow equation (2.15), to satisfy the constant mass-flux condi-
tion. At each level of the iteration scheme described above we compute xk, then the
corresponding mean-flow problem is solved directly, including the constant ∂q−1/∂X ,
from (2.15). We continue the iteration, as described above, until some measure of
convergence is satisfied, which in this case we choose to be that the frequency cor-
rection and largest change in Chebyshev coefficients are less than preset tolerances.

In figures 2, 3 and 4 we show typical cross-sections of the neutral surface at fixed
wavenumbers of 1.08, 0.95 and {1.1, 0.9707}, respectively. The results of figure 4 (for
α = 1.1, Nh = 1) are consistent with those obtained by Pugh & Saffman (1988). The
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Figure 3. A cross-section of the neutral surface at α = 0.95, with Nh = 1, 2.

0

0.01

0.02

0.03

0.04

0.05

3000 4000 5000 6000

N

Nh =1 =1

Nh=2

E

Reynolds Number, Re

α=1.1

h=2
α=1.1 α=0.9707

N
α=0.9707

h

Figure 4. Cross-sections of the neutral surface at α = 0.9707, 1.1, with Nh = 1, 2.

energy of the two-dimensional wave is denoted by E in the figures, and defined by

E =
Nh∑
n=1

En, (4.11)

where

En = 15
8

∫ +1

−1
(|Dψ0n|2 + |nαψ0n|2) dy, (4.12)

a normalized energy measure for each harmonic.
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Figure 5. A cross-section of neutral surface at Re = 3500, with Nh = 1, 2.

0

0.002

0.004

0.8 1 1.2 1.4

Nh =1 Nh =1

Nh =1
Re=5500

Nh =2
Re=5500

E

Re=6000 Re=6000

α

Figure 6. Cross-sections of the neutral surface at subcritical (Re = 5500) and supercritical
(Re = 6000) Reynolds numbers.

Figure 5 displays the form of the cross-section for a fixed Reynolds number of
Re = 3500. Since this Reynolds number is subcritical the neutral surface of figure 5
does not intersect the E = 0 plane, but defines a threshold energy above which
equilibrium solutions can be located. In figure 6 we show the lower branch of the
neutral surface at fixed Reynolds numbers of 5500 (subcritical) and 6000 (supercriti-
cal), these parameter values (together with those chosen for figures 2–4) will be used
in the following computations of the coefficient Φ.

We found that Nc = 40 was generally sufficient to give converged results for any
chosen number of harmonics in this Reynolds number range. We note that, as shown
in figure 5 (also figure 2), the overall effect of including higher harmonics is to shift
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the neutral surface to higher streamwise wavenumbers and to a slightly lower energy
range. Although the inclusion of higher harmonics (i.e. Nh > 4) still altered the mid-
range amplitude results, the qualitative behaviour remained the same, as noted in
Herbert’s (1976) investigation of the slightly different problem of a constant pressure
gradient flow.

(b) The O(δ) problem

To determine the sign of the diffusive coefficient on the right of the Burgers equa-
tion we need to solve the next order problem. In § 2 a the phase equation analysis
of the uniform wavetrain problem showed that the frequency correction term was
determined by the solvability condition

Ω1 =
∂α

∂X

{∫ 2π

θ=0

∫ +1

y=−1
−∇̂2ψ̂0θr6 dy dθ

}−1

×
{∫ 2π

θ=0

∫ +1

y=−1

[
Ω0(2αψ̂0θθα + ψ̂0θθ) +Ω0α

∂∇̂2ψ̂0

∂α
+ α

∂(ψ̂0, 2αψ̂0θα + ψ̂0θ)
∂(θ, y)

+
∂(ψ̂0, ∇̂2ψ̂0)
∂(α, y)

+Re−1{4α∇̂2ψ̂0θα + 4α2ψ̂0θθθ + 2∇̂2ψ̂0θ}
]
r6 dy dθ

}
.

(4.13)

Here ψ̂0 is the basic parallel flow plus two-dimensional periodic flow and r6 solves
the adjoint problem, which can be shown to be

−Re−1∇̂4r6 − (αψ̂0y −Ω0)∇̂2r6θ + αψ̂0θ∇̂2r6y

− 2αψ̂0yθ

(
α2 ∂

2

∂θ2 −
∂2

∂y2

)
r6 + 2αr6θy

(
α2 ∂

2

∂θ2 −
∂2

∂y2

)
ψ̂0 = 0, (4.14)

with boundary conditions r6 = r6θ = 0 at y = ±1. However, in our calculations we do
not solve the linear homogeneous problem (4.14) but rather define a new composite
nonlinear problem that is an inhomogeneous form of the order one system; this can
be computed directly after the leading-order solution by using the same routine. We
solve

N{ψ̃0; Ω̃0} = δM(θ, y) +O(δ2), (4.15)

where the operator N and the new parameters are given by

N = LO(1) + δLO(δ), (4.16)

Ω̃0 = Ω0 + δΩ1, (4.17)

ψ̃0 = ψ̂0 + δψ1, (4.18)

with M and LO(·) as defined previously. Hence, after solving the leading-order prob-
lem, we compute the inhomogeneous terms produced by M , then iterate on the
amplitude of the new composite solution at fixed {α,Re}. The frequency correction
term is then determined by an application of the condition Ω1 = ∂Ω̃0/∂δ at δ = 0.

A point to note is that we divide the neutral surface into two sections, which are
referred to as the upper and lower branches. We can see from (4.13) that we should
expect a singular behaviour for the coefficient of the diffusive term as we approach
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Figure 7. The variation of Φ at α = 1.08 with Nh = 1, 2, 3.
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Figure 8. The variation of Φ at α = 0.95 with Nh = 2.

two other regions, namely where the lower branch connects with the E = 0 plane and
where the upper and lower branches join at finite amplitude. The singularities are
due to the way in which the amplitude and frequency vary with α at these points,
and further work is required near these regions; we present some discussion of this
limit in § 5.

We present, in figures 7 and 8, the behaviour of the diffusion coefficient in the evo-
lution equation as the leading-order solution varies along the lower branches shown
in figures 2 and 3. Since the evolution of a wavenumber perturbation to a uniform
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Figure 9. The variation of Φ at a supercritical Reynolds number (Re = 6000) with Nh = 1.
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Figure 10. The variation of Φ at a subcritical Reynolds number (Re = 5500) with Nh = 1, 2.

wavetrain (as discussed in § 2 a) is governed by the Burgers equation, (2.47), and the
diffusive coefficient in (2.47) is −Φ, we see that the solution is essentially character-
ized by the sign of Φ.

Since the linear neutral curve exists for each of the wavenumbers represented in
figures 7 and 8 we find a singular behaviour of Φ at a Reynolds number for which
the neutral surface intersects the E = 0 plane as discussed above.

We have carried out calculations (of Φ), with more harmonics, for a number of typi-
cal parameter values and found that such results have the same qualitative behaviour.
In fact, the main effect of the higher harmonics is to alter the cross-sectional shape of
the neutral surface as shown in figure 5, thus altering the position of the singularities
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Figure 11. The variation of Φ for upper branch solutions at α = 1.1 with Nh = 1.

when evaluating Φ for varying Reynolds numbers, wavenumber or amplitude. This
can result in a quantitative difference in the value of Φ computed for different Nh 6 3
(as seen in figure 7); however, since we are particularly interested only in the sign of
Φ the inclusion of higher harmonics does not change the conclusion that both signs
are possible in general. If we wished to compute the location of points on the neutral
surface at which Φ changes sign, then obviously more harmonics would be required
for accurate values.

In figures 9 and 10 we show the behaviour of Φ as a function of the wavenum-
ber α for fixed Reynolds numbers; the vertical lines in figure 9 show the critical
wavenumbers predicted by linear theory. These figures are computed for the sections
of the neutral surface shown in figure 6, and thus the wavenumbers represented by
the vertical lines in figure 9 are those at which the neutral surface for Re = 6000
(the dashed curve shown in figure 6) intersects the E = 0 plane (also see figure 1).

Finally, figures 11 and 12 show the behaviour of Φ for solutions that correspond
to points upon the upper branch of the neutral surface at α = 1.1, Nh = 1 and
α = 0.9707, respectively.

5. The evolution equation as E → 0

As noted in the previous section, the phase equation method is only valid for finite-
amplitude periodic states; if we allow the leading-order solution to approach the
linear limit then the coefficient Φ, in the Burgers equation, becomes singular. A
simplistic approach would be to return to the uniform wavetrain problem and allow
the O(δ0) system to be a small-amplitude solution with a phase function of leading-
order form

θ0 = α0x−Ω0(α0)t. (5.1)
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Figure 12. The variation of Φ for upper branch solutions at α = 0.9707 with Nh = 1, 2.

In this formulation, {α0, Re} is a point on the lower branch of the neutral surface in
the weakly nonlinear region with

α0 = αn + α̃, |α̃| � 1, (5.2)
where αn is a wavenumber corresponding to a point on the linear neutral curve. If
we perturb this solution with a slowly varying function ∆,

α = α0 +∆(X,T ), (5.3)
then, as we approach the linear neutral curve, we know that the neutral surface has
the scalings

A = O(|α− αn|1/2), (5.4)
Ω = Ωn +O(α− αn), (5.5)

for some amplitude measure A and where Ωn is a frequency associated with the
linear solution. The full form of the evolution equation is
∂∆

∂T
+ (Ω0(α0) +∆Ω′0(α0) + · · · )∂∆

∂X
= δ

∂

∂X

{
Φ(α)

∂∆

∂X
+ δΩ2(α) + · · ·

}
, (5.6)

or, equivalently,

η
∂∆

∂τ
+Ω′0(α0)∆

∂∆

∂ξ
+
{
Ω′′0 (α0)∆2 ∂∆

∂ξ
+ · · ·

}
= δΦ(α0)

∂2∆

∂ξ2

+ δ

{
Φ′(α0)

(
∂∆

∂ξ

)2

+ Φ′(α0)∆
∂2∆

∂ξ2 + · · ·
}

+ δ2 ∂Ω2

∂ξ
+ · · · , (5.7)

after applying the substitutions (2.43)–(2.44).
Therefore approaching the linear neutral curve may reintroduce other terms from

the expression

∂Ω1

∂ξ
=

∂Φ

∂α0

(
∂∆

∂ξ

)2

+
∂Φ

∂α0
∆
∂2∆

∂ξ2 + · · · , (5.8)
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since applying the scalings (5.4)–(5.5) to equation (4.13) we see that
Φ(α0) ∼ 1/α̃, (5.9)

and the above terms can be of the same order of magnitude when
η ∼ ∆ ∼ δ1/2 ∼ α̃. (5.10)

This limit is obviously non-uniform; the phase equation theory, as presented in the
previous sections, is aimed towards a treatment of fully nonlinear waves, but we see
that the well-known theory concerning weakly nonlinear waves is not simply a small
amplitude limiting case of the phase equation approach.

The reason for this difficulty in connecting the two approaches in the small ampli-
tude limit is that, as we approach the linear neutral curve, the amplitude will no
longer be determined explicitly from the leading-order eigenvalue problem (2.8). So
rather than assuming the weakly nonlinear scalings (5.4)–(5.5) we need to introduce
the amplitude of the two-dimensional wave into the analysis as an active parame-
ter. We also note that the solvability requirements are complicated by taking the
small amplitude limit (see Newell et al . 1993). It is the introduction of the ampli-
tude into the theory that would allow us to satisfy these extra solvability conditions.
This would result in two real equations that may then, presumably, be combined to
recover a single complex evolution equation equivalent to that obtained by an appli-
cation of a Stuart–Watson weakly nonlinear approach to the plane Poiseuille flow
problem. Furthermore, in this limit, we no longer have a small parameter, δ, that is
arbitrary; it will now be related to the magnitude of the wavenumber displacement
from the linear neutral value, αn.

Connection of the phase equation method to the appropriate weakly nonlinear
theory proves difficult in general, indeed the analysis still remains incomplete for
convection problems in which phase equation methods have been applied for some
years. The recent works of Newell et al . (1993), Passot & Newell (1994) and Cross &
Newell (1984) have discussed the points above and gone some way towards resolving
the difficulties, although they restrict attention to much simplified model equations
for convection (for example, the Swift–Hohenburg equation). In particular, Cross
& Newell (1984) show how the evolution equation for such a model system can be
matched with the Newell–Whitehead–Segel (NWS) equation, which was developed
for convection problems with Rayleigh numbers approaching the linear critical value.
In their analysis they demonstrate that the limiting forms of the phase evolution
equation and the amplitude equation (required in this limit) form the imaginary and
real parts of the NWS evolution equation respectively, hence they can be combined
to match with previous results.

6. A three-dimensional phase equation theory

We now apply a generalized (following Howard & Kopell 1977) form of the two-
dimensional phase equation method to a spanwise dependent problem. To achieve
this we first introduce a further spanwise scale,

Z = δz, (6.1)
and generalize the phase as a function of three variables, θ(x, z, t) = Θ(X,Z, T )/δ,
now defining a spanwise wavenumber, β, by

β = ΘZ . (6.2)
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The consistency conditions in this approach are

αT +ΩX = 0, (6.3)
αZ − βX = 0, (6.4)
βT +ΩZ = 0, (6.5)

where both wavenumbers and frequency are functions of the slow scales X, Z and T .
We restrict attention to the stability of uniform wavetrains, considering a leading-
order problem that is an oblique travelling wave solution at finite amplitude. We now
perturb the wavenumbers as

α = α0 + δ∆1(X,Z, T ), (6.6)
β = β0 + δ∆2(X,Z, T ), (6.7)

and hence transform the partial derivatives in the following manner:

∂

∂x
→ α0

∂

∂θ
+ δ

(
∆1

∂

∂θ
+

∂

∂X

)
, (6.8)

∂

∂z
→ β0

∂

∂θ
+ δ

(
∆2

∂

∂θ
+

∂

∂Z

)
, (6.9)

∂

∂t
→ −Ω0

∂

∂θ
+ δ

(
−Ω1

∂

∂θ
+

∂

∂T

)
+ · · · . (6.10)

We also expand the velocity field and pressure function as

u = (1− y2, 0, 0)T + u0(θ, y) + δu1(X,Z, T, θ, y) + · · · , (6.11)

p = [−(2/Re)X + q−1(X,Z)]δ−1 + [p0(θ, y) + q0(X,Z, T )] + · · · , (6.12)

where qi are the additional pressure terms required to satisfy a constant mass flux
through the channel.

Now as before we can expand the Navier–Stokes equations in terms of the slow-
scale parameter, giving a leading-order system

−Ω0û0θ + α0û0û0θ + v0û0y + β0w0û0θ − 1
Re
∇̂2

3û0 + α0p0θ = −∂q−1

∂X
, (6.13)

−Ω0v0θ + α0û0v0θ + v0v0y + β0w0v0θ − 1
Re
∇̂2

3v0 + p0y = 0, (6.14)

−Ω0w0θ + α0û0w0θ + v0w0y + β0w0w0θ − 1
Re
∇̂2

3w0 + β0p0θ = −∂q−1

∂Z
, (6.15)

α0û0θ + v0y + β0w0θ = 0, (6.16)

∇̂2
3 ≡ (α2

0 + β2
0)
∂2

∂θ2 +
∂

∂y2 , (6.17)

where û0 = Ū + u0. At this order we let q−1(X,Z) = κ1X + κ2Z and choose κ1, κ2
to satisfy zero mass flux through the channel for the disturbance. Continuing further
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yields an O(δ) system of the form

Lu{u1, v1, w1, p1} = ∆1

[
− û0û0θ − p0θ +

2
Re
α0û0θθ

]
+∆2

[
− w0û0θ +

2
Re
β0û0θθ

]
+Ω1û0θ − ∂q0

∂X
, (6.18)

Lv{u1, v1, w1, p1} = ∆1

[
− û0v0θ +

2
Re
α0v0θθ

]
+∆2

[
− w0v0θ +

2
Re
β0v0θθ

]
+Ω1v0θ, (6.19)

Lw{u1, v1, w1, p1} = ∆1

[
− û0w0θ +

2
Re
α0w0θθ

]
+∆2

[
− w0w0θ − p0θ +

2
Re
β0w0θθ

]
+Ω1w0θ − ∂q0

∂Z
, (6.20)

α0u1θ + v1y + β0w1θ = ∆1[−û0θ] +∆2[−w0θ], (6.21)

where Lu{u1, v1, w1, p1} is given by

Lu{u1, v1, w1, p1} ≡ −Ωu1θ + α0û0u1θ + α0u1û0θ + v0u1y + v1û0y

+ β0w0u1θ + β0w1û0θ − (1/Re)∇̂2
3u1 + α0p1θ, (6.22)

with analogous forms for Lv and Lw.
After some work we can see that the solution is of the form

(u1, v1, w1, p1)T = φ
11
∆1(X,Z, T ) + φ

12
∆2(X,Z, T )

+ φ
13

∂q0

∂X
(X,Z, T ) + φ

14

∂q0

∂Z
(X,Z, T ), (6.23)

and the solvability condition determines Ω1 as

Ω1 =
∂Ω0

∂α0
∆1(X,Z, T ) +

∂Ω0

∂β0
∆2(X,Z, T ), (6.24)

where we have used

φ
11

=
∂φ

0

∂α0
− ∂κ1

∂α0
φ

13
− ∂κ2

∂α0
φ

14
, (6.25)

φ
12

=
∂φ

0

∂β0
− ∂κ1

∂β0
φ

13
− ∂κ2

∂β0
φ

14
, (6.26)

φ
13

=
∂φ

0

∂κ1

∣∣∣∣
{α0,β0,Ω0} fixed

, (6.27)

φ
14

=
∂φ

0

∂κ2

∣∣∣∣
{α0,β0,Ω0} fixed

, (6.28)

with φ
0

replaced by {u0, v0, w0, p0}.
In the usual two-dimensional iteration scheme (where Re is fixed), we specify
{α0, amplitude} and iterate on {Ω0, κ1}. Now for given wavenumber and amplitude,
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we can think of Ω0 as a function of κ1 with the required frequency given by Ω0(κ∗1),
where κ1 = κ∗1 is determined by the zero mass-flux condition for the disturbance.
Obviously, we could equally fix {α0, Ω0} and iterate on {amplitude, κ1} to define the
amplitude as a function of the pressure constant. We can apply this same argument
to the three-dimensional iteration scheme and so define the solutions {φ

13
,φ

14
}.

If we continue the expansion scheme to next order, we obtain a similar system of
equations with inhomogeneous terms of the form {∆2

1, ∆
2
2, ∆1X , ∆2X , ∆1q0X , . . . };

we state the results for the fully three-dimensional problem in Appendix A, but to
simplify this problem (and outline the basic method) we shall consider the weakly
three-dimensional limit of β0 → 0. In this limit, the leading-order system will be the
same two-dimensional problem computed in previous sections, but the solutions to
the O(δ) equations are

(u1, v1, w1, p1)T = (u11, v11, 0, p11)T∆1 + (0, 0, w12, 0)T∆2

+ (u13, v13, 0, p13)T ∂q0

∂X
+ (0, 0, w14, 0)T ∂q0

∂Z
, (6.29)

where

(u11, v11, p11)T =
∂

∂α0
(u0, v0, p0)T − ∂κ1

∂α0
(u13, v13, p13)T, (6.30)

(u13, v13, p13)T =
∂

∂κ1
(u0, v0, p0)T

∣∣∣∣
{α0,β0,Ω0} fixed

, (6.31)

w12 =
∂w0

∂β0
− ∂κ2

∂β0
w14, (6.32)

w14 =
∂w0

∂κ2

∣∣∣∣
{α0,β0,Ω0} fixed

. (6.33)

The solvability condition at this order reduces to

Ω1 =
∂Ω0

∂α0
∆1(X,Z, T ), (6.34)

since for β0 ∼ O(γ), γ � 1,

∂

∂α0
{û0, v0, p0, κ1}, {p13, u13, v13} ∼ O(1),

∂

∂α0
{w0, κ2}, w13 ∼ O(γ),

∂

∂β0
{û0, v0, p0, κ1}, {p14, u14, v14} ∼ O(γ),

∂

∂β0
{w0, κ2}, w14 ∼ O(1).


(6.35)

The group velocity obtained in this limit is equivalent to the two-dimensional case,
as expected. Continuing the expansion scheme further, to O(δ2), yields the following
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after some simplification:

L̄u{u2, v2, p2} =
[
∂Ω0

∂α0
u11θ − û0u11θ − α0u11u11θ − u11û0θ − v11u11y − p11θ

+
1
Re

(2α0u11θθ + û0θθ)
]
∆2

1 +
[
− w12û0θ +

1
Re

(û0θθ)
]
∆2

2

+ [−α0u13u13θ − v13u13y]
(
∂q0
∂X

)2

+ [−w13û0θ]∆2
∂q0

∂Z

+
[
∂Ω0

∂α0
u13θ − û0u13θ − α0u11u13θ − α0u13u11θ − u13û0θ

− v11u13y − v13u11y − p13θ +
1
Re

(2α0u13θθ)
]
∆1

∂q0

∂X

+
[
∂Ω0

∂α0
u13 − û0u13 − p13 +

1
Re

(2α0u13θ)
]
∂2q0

∂X2

+
[
∂Ω0

∂α0
u11 − û0u11 − p11 +

1
Re

(2α0u11θ + û0θ)
]
∂∆1

∂X

+
[

1
Re
û0θ

]
∂∆2

∂Z
+Ω2û0θ − ∂q1

∂X
, (6.36)

with an analogous form for the v momentum equation and a decoupled w momentum
problem. Continuity of mass at this order gives the further equation,

α0
∂u2

∂θ
+
∂v2

∂y
= −u11

∂∆1

∂X
− u13

∂2q0

∂X2 − w12
∂∆2

∂Z
− w14

∂2q0

∂Z2

− u11θ∆
2
1 − u13θ∆1

∂q0

∂X
− w12θ∆

2
2 − w14θ∆2

∂q0

∂Z
. (6.37)

We have used L̄u (in (6.36)) to indicate the operator Lu, defined by (6.22), with
β0 = 0, and the boundary conditions for the systems discussed above are no-slip and
impermeability at the fixed planes y = ±1. In this three-dimensional formulation,
the additional pressure term, q0, will contribute explicitly to the solvability condition
for Ω2; whereas in the previous theory this term was formally eliminated by using the
stream function and vorticity equation approach. This is analogous to the work of
Davey et al . (1974), concerning the weakly nonlinear evolution of three-dimensional
disturbances in plane Poiseuille flow, where they found that a secular pressure term
contributed to the final form of the evolution equation.

If we consider the continuity equation for those terms which have zero mean with
respect to the phase variable θ, we obtain

∂v̄2

∂y
= −ū11

∂∆1

∂X
− ū13

∂2q0

∂X2 − w̄12
∂∆2

∂Z
− w̄14

∂2q0

∂Z2 , (6.38)

where the bar notation indicates the mean part of the relevant expression. Integration
of this equation shows that, for impermeability at both boundaries, we must satisfy
the linear partial differential equation

∂2q0

∂X2 I1 +
∂2q0

∂Z2 I2 =
∂∆1

∂X

∂κ1

∂α0
I1 +

∂∆2

∂Z

∂κ2

∂β0
I2, (6.39)
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where

I1 =
∫ +1

y=−1
ū13 dy and I2 =

∫ +1

y=−1
w̄14 dy. (6.40)

Now returning to the solvability condition determining Ω2, we can see that further
simplifications are possible by introducing some particular solutions; for example,

L̄u

{
∂u11

∂κ1
,
∂v11

∂κ1
,
∂p11

∂κ1

}
= S1, (6.41)

L̄u

{
∂u13

∂κ1
,
∂v13

∂κ1
,
∂p13

∂κ1

}
= S2, (6.42)

L̄u

{
∂u12

∂κ2
,
∂v12

∂κ2
,
∂p12

∂κ2

}
= S3, (6.43)

where S1, S2, S3 are the [· · · ] coefficients of the ∆1q0X , (q0X)2 and ∆2q0Z terms,
respectively, in (6.36). These particular solutions can be applied to the system as a
whole, reducing the form of the frequency correction term to

Ω2 = Ω21∆
2
1 +Ω22∆

2
2 + Φ1

∂∆1

∂X
+ Φ2

∂∆2

∂Z
+ Φ3

∂2q0

∂X2 , (6.44)

where {Ω2i, Φi} are constants determined from the appropriate integrals contained
in the solvability condition. Furthermore, a perturbation of {α0, β0} in the leading-
order problem shows that

Ω21 = 1
2
∂2Ω0

∂α2
0
, Ω22 = 1

2
∂2Ω0

∂β2
0
. (6.45)

The consistency conditions now determine the evolution of the wavenumber pertur-
bations, and applying the above results we obtain

δ
∂∆1

∂T
+ δ

∂Ω0

∂α0

∂∆1

∂X
+ δ2

{
∂2Ω0

∂α2
0
∆1

∂∆1

∂X
+
∂2Ω0

∂β2
0
∆2

∂∆2

∂X

+ Φ1
∂2∆1

∂X2 + Φ2
∂2∆2

∂X∂Z
+ Φ3

∂3q0

∂X3

}
+O(δ3) = 0, (6.46)

∂∆1

∂Z
=
∂∆2

∂X
. (6.47)

Now for a leading-order balance we again introduce the slower time-scale τ (defined
by (2.43)) and make the Galilean transformation (2.44). Now by defining Θ̃ as

∂Θ̃

∂ξ
= ∆1,

∂Θ̃

∂Z
= ∆2, (6.48)

we obtain

Θ̃ξτ +
∂2Ω0

∂α2
0
Θ̃ξΘ̃ξξ +

∂2Ω0

∂β2
0
Θ̃ZΘ̃ξZ = −Φ1Θ̃ξξξ − Φ2Θ̃ξZZ − Φ3q0ξξξ (6.49)

and

q0ξξ + λ1q0ZZ = −λ2Θ̃ξξ − λ3Θ̃ZZ . (6.50)
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As mentioned above, the terms {Φ1, Φ2, Φ3} can be calculated numerically (although
it is not a trivial computation) from the integrals derived in the solvability condition,
and {λ1, λ2, λ3} denote the coefficients{

I2
I1
,
∂κ1

∂α0
,
I2
I1

∂κ2

∂β0

}
in (6.39). We observe that if ∂Z ≡ 0, then q0ξξξ reduces to a constant multiple of
∆1ξξ, the O(δ) problem is simplified, and we return to the Burgers equation once
more.

There is little we can say about the solution of this equation without a detailed
numerical investigation and computation of the coefficients from their integral rep-
resentations. The form of the system (6.49)–(6.50) can be simplified by rescaling
appropriately but only to the form

Aχτ +AχAχχ ±AζAζχ = ±Aχχχ + c1Aχζζ +Bχχχ, (6.51)
Bχχ + c2Bζζ = c2Aχχ + c3Aζζ , (6.52)

where cj are constants, which can be written in terms of those appearing previously.
We note that the first equation, (6.51), can be integrated with respect to χ if we
redefine the dependent variable to include an arbitrary function of τ . We also note
(as in Davey et al . 1974) that a return to the Burgers equation (after a further rescal-
ing) is achieved for skewed two-dimensional perturbations; that is, for wavenumber
perturbations which may be written solely in terms of a skewed variable,

Ξ = lχ+mζ, (6.53)

for some real values l and m. Obviously, the sign of the diffusive term will determine
the type of solution obtained, but this must again be calculated from the coefficients
introduced above and any chosen values of {l,m}.

7. Conclusion

We have applied a phase equation technique to develop a perturbation theory for
slowly varying finite-amplitude wavetrains, at finite Reynolds numbers, in plane Poi-
seuille flow. When the method is applied to uniform wavetrains we have shown that
a small wavenumber perturbation evolves according to the Burgers equation. We can
obtain an exact solution to the Burgers equation via the Cole–Hopf transformation
and the solution is characterized by the sign of the diffusive coefficient. For a typical
uniform wavetrain with O(1) disturbance energy, we have discussed how to compute
the coefficients appearing in the evolution equation.

A number of numerical results, for solutions corresponding to cross-sections of
the neutral surface, have been presented showing that both diffusively stable and
unstable cases are possible in general. In the unstable case (Φ positive), we know that
the wavenumber perturbation develops a singularity at finite time in the slow scale.
For the diffusively stable case (Φ negative), it is possible for weak shock structures
to appear for non-localized or non-periodic initial conditions.

Interpreting these results physically, we see that finite-amplitude uniform wave-
train solutions should not be observed in plane Poiseuille flow. Obviously, for this
flow configuration, we must also note that this is only one of a number of active
instability mechanisms. We make no claims that the modulational instability of the
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wavetrain is in any way the ‘most unstable’, but since an initial disturbance can
always be found that does not decay (for two-dimensional waves), it suggests that
the use of uniform wavetrains in theory and computation needs some justification
for large-scale problems. We can only say at this stage that the uniform wavetrains
are unstable through this mechanism (on the previously defined slow spatial and
temporal scales), and not what the large-time form of a wavenumber perturbation
would be. As the wavenumber perturbation either develops shock discontinuities or a
finite-time singularity we must at some stage reintroduce previously neglected terms
into the evolution equation, (2.47), to give a new form valid near the shock or at the
time of breakdown as appropriate.

As the shock structures in the wavenumber perturbation are approached, we expect
higher-order spatial derivatives to become of equal importance in the evolution equa-
tion. We see (as noted by Bernoff 1988), by an induction argument, that higher-order
frequency corrections are of the form

Ωn = Pn

(
∂α

∂X
,
∂2α

∂X2 , . . . ,
∂nα

∂Xn

)
, (7.1)

a polynomial in the slow-scale derivatives of the wavenumber. Thus as the length-
scales shorten, all the higher-order terms will become of comparable magnitude simul-
taneously. When all the previously neglected terms return to the evolution equation,
we must return to the full unsteady two-dimensional Navier–Stokes equations to
determine the development.

We have shown in § 3 that the phase equation method is distinct from a multi-scale
amplitude perturbation approach. A perturbation of the phase in the form,

θ = θ0(x, t) + (ε/δ)Θ1(δx, δt) + · · · , (7.2)
may be expected to be equivalent to an amplitude perturbation for ε sufficiently
small. For uniform wavetrains, however, we showed, in § 2, that for a leading-order
balance we required that the wavenumber perturbation be of comparable magnitude
to the slow-scale parameter, thus ε ∼ δ and the multi-scale approach must be dis-
tinct. The evolution equation obtained from the amplitude perturbation method is
simply the heat transfer equation and no nonlinearity can be introduced. For the
diffusively unstable case, we must rely on linear higher-order derivatives to become
of comparable magnitude and alter the form of the evolution equation.

We have also shown that the evolution equation must break down to a different
form as the leading-order problem approaches the linear limit or the region where
the upper and lower branches join at finite amplitude. This singularity is due to the
behaviour of the neutral surface in these areas, and in the weakly nonlinear case we
observed that a regularization of the evolution equation is non-trivial. Indeed this
has to be the case if we are to be able to reconcile the phase equation approach
with the well-known results of weakly nonlinear theory, namely the Stuart–Landau
equation.

To investigate the effects of three dimensionality we also developed a form for
the evolution equation by extending the definitions of the phase method applied
in previous sections. To simplify the basic analysis a weak spanwise dependence
is allowed for in the uniform wavetrain problem; the analogous results for a fully
three-dimensional situation are stated in the appendix. In this case we show that
the evolution equation is more complex, and is coupled with a further linear par-
tial differential equation. This coupled equation determines an additional pressure
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function (required in order to satisfy an impermeability condition at the parallel
boundaries) that in the two-dimensional formulation is formally eliminated by using
a stream function approach. The comments made above concerning the breakdown
of the phase equation method, at the E = 0 plane of the neutral surface, will simi-
larly apply here in the three-dimensional approach. We should expect to be able to,
likewise, match the phase method, in the appropriate areas of the neutral surface,
to the results of Davey et al . (1974) concerning the weakly nonlinear development
of three-dimensional disturbances. The multi-scale approach, of § 3, can be similarly
extended to three dimensions, giving the heat equation with diffusion on both slow
scales although this is again linearly coupled with the same partial differential equa-
tion for the pressure term.

Thus, generally, the development of, and role played by, these uniform wavetrains
in PPF is complex to determine. We have shown susceptibility to weak shocks and
finite-time singularities for both upper and lower branch solutions, together with a
complex regularization problem in the E → 0 limit. As well as these slow-scale effects,
we also have the superharmonic instability results of Pugh & Saffman (1988), which
occur on O(1) scales, the apparent slow decay of three-dimensional perturbations
to the fully developed flow as discussed by Orszag & Patera (1983) and the bypass
mechanisms of Gustavsson et al., to mention just some of the instability mechanisms
present. Obviously, it is difficult to say (in any given problem) how such mechanisms
will interact but to assume that any one will dominate over others needs to be
carefully justified.

There are a number of questions that remain unanswered in this discussion, i.e.
matching the phase equation theory to a relevant approach in the weakly nonlin-
ear case, and the effect of the weak three dimensionality through computation of
the evolution equations (6.49)–(6.50). If in future we wish to produce a full numer-
ical procedure, to give refined values for the neutral surface, or for computation
of the evolution equation with weak spanwise dependence, we should perhaps con-
sider replacing the numerical method described previously with a similar collocation
method. Such techniques were used successfully at a later stage by Herbert (1976)
and have the advantage of reducing computation time by allowing for a simpler
evaluation of the nonlinear terms in Newton’s method.

This research was supported in part by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-19480 while the second author was in residence at the Institute
for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Cen-
ter, Hampton, VA 23681-0001, USA. Support for the first author was provided by the EPSRC.
The authors would like to thank Dr Y. Fu and the referees for helpful comments concerning this
work.

Appendix A. The fully three-dimensional problem

In this appendix we present some of the more lengthy details involved with the
application of phase equation methods to a fully three-dimensional problem; by which
we mean (in this application) the modulation over long spanwise and streamwise
scales of a fully oblique uniform wavetrain in PPF. We prefer to present these details
as an appendix in order to keep the basic method (as presented in § 6 for the case of
a weak spanwise dependence) as simple as possible.
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Substituting the form of solution for the O(δ) system, defined by (6.25)–(6.28),
into the inhomogeneous terms at O(δ2) yields

L{u2, v2, w2, p2} = R1∆
2
1 +R2∆

2
2 +R3∆1∆2 +R4

∂∆1

∂X
+R5

∂∆2

∂X

+R6
∂∆1

∂Z
+R7

∂∆2

∂Z
+R8

∂2q0

∂X2 +R9
∂2q0

∂X∂Z
+R10

∂2q0

∂Z2

+R11∆1
∂q0

∂X
+R12∆2

∂q0

∂X
+R13∆1

∂q0

∂Z
+R14∆2

∂q0

∂Z

+R15

(
∂q0
∂X

)2

+R16
∂q0

∂X

∂q0

∂Z
+R17

(
∂q0

∂Z

)2

+Ω2
∂û0

∂θ
−
(
∂q1

∂X
, 0,

∂q1

∂Z

)T

, (A 1)

as the vector form of the momentum equations, where L ≡ (Lu, Lv, Lw)T, together
with a continuity of mass condition,

α0
∂u2

∂θ
+
∂v2

∂y
+ β0

∂w2

∂θ
= −

{
∂u11

∂θ
∆2

1 +
∂w12

∂θ
∆2

2 +
∂

∂θ
(u12 + w11)∆1∆2

+ u11
∂∆1

∂X
+ u12

∂∆2

∂X
+ w11

∂∆1

∂Z
+ w12

∂∆2

∂Z

+ u13
∂2q0

∂X2 + (u14 + w13)
∂2q0

∂X∂Z
+ w14

∂2q0

∂Z2

+
∂u13

∂θ
∆1

∂q0

∂X
+
∂w13

∂θ
∆2

∂q0

∂X

+
∂u14

∂θ
∆1

∂q0

∂Z
+
∂w14

∂θ
∆2

∂q0

∂Z

}
. (A 2)

The coefficients, denoted byRi above, are straightforward to determine; for example,

R1 =
∂Ω0

∂α0

∂u11

∂θ
− û0

∂u11

∂θ
− α0u11

∂u11

∂θ
− u11

∂û0

∂θ
− v11

∂u11

∂y

− β0w11
∂u11

∂θ
−
(
∂p11

∂θ
, 0, 0

)T

+
1
Re

{
2α0

∂2u11

∂θ2 +
∂2û0

∂θ2

}
. (A 3)

This system requires a solvability condition to be satisfied and therefore determines
Ω2 for a given leading-order solution. Before computing the integrals needed for the
evaluation of Ω2 we note that a number of the inhomogeneous terms given above can
be removed from the solvability condition by introducing some particular solutions,

L

{
∂u11

∂κ1
,
∂v11

∂κ1
,
∂w11

∂κ1
,
∂p11

∂κ1

}
= R11, L

{
∂u12

∂κ1
,
∂v12

∂κ1
,
∂w12

∂κ1
,
∂p12

∂κ1

}
= R12, (A 4)

L

{
∂u11

∂κ2
,
∂v11

∂κ2
,
∂w11

∂κ2
,
∂p11

∂κ2

}
= R13, L

{
∂u12

∂κ2
,
∂v12

∂κ2
,
∂w12

∂κ2
,
∂p12

∂κ2

}
= R14, (A 5)

L

{
∂u13

∂κ1
,
∂v13

∂κ1
,
∂w13

∂κ1
,
∂p13

∂κ1

}
= R15, L

{
∂u14

∂κ1
,
∂v14

∂κ1
,
∂w14

∂κ1
,
∂p14

∂κ1

}
= R16, (A 6)

L

{
∂u14

∂κ2
,
∂v14

∂κ2
,
∂w14

∂κ2
,
∂p14

∂κ2

}
= R17, (A 7)
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together with the previous solutions (6.25)–(6.28); obviously these solutions likewise
apply to the appropriate inhomogeneous terms of the continuity equation.

The explicit content of the solvability condition can be determined by computing
the adjoint and relevant integrals; although we do not give such details here it is
noted that the final form of the frequency correction must be

Ω2 = Ω̂21∆
2
1 + Ω̂22∆1∆2 + Ω̂23∆

2
2 + Φ̂1

∂∆1

∂X
+ Φ̂2

∂∆2

∂X

+ Φ̂3
∂∆1

∂Z
+ Φ̂4

∂∆2

∂Z
+ Φ̂5

∂2q0

∂X2 + Φ̂6
∂2q0

∂X∂Z
+ Φ̂7

∂2q0

∂Z2 , (A 8)

for coefficients Ω2i and Φ̂i, which, in general, must be determined numerically.
Although we can not remove the terms ∆2

1, ∆1∆2, ∆2
2 from the solvability con-

dition, we can effectively remove them from the computation by noting that a fur-
ther wavenumber perturbation of the systems satisfied by {u11, v11, w11, p11} and
{u12, v12, w12, p12} yields

Ω̂21 = 1
2
∂2Ω0

∂α2
0
, Ω̂22 =

∂2Ω0

∂α0∂β0
, Ω̂23 = 1

2
∂2Ω0

∂β2
0
. (A 9)

The evolution of the wavenumber perturbations is then governed by the following
system:

∂∆1

∂τ
+
∂2Ω0

∂α2
0
∆1

∂∆1

∂ξ
+
∂2Ω0

∂β2
0
∆2

∂∆2

∂ξ
+

∂2Ω0

∂α0∂β0

∂

∂ξ
(∆1∆2) = −Φ̂1

∂2∆1

∂ξ2

− Φ̂2
∂2∆2

∂ξ2 − Φ̂3
∂2∆1

∂ζ∂ξ
− Φ̂4

∂2∆2

∂ζ∂ξ
− Φ̂5

∂3q0

∂ξ3 − Φ̂6
∂3q0

∂ζ∂ξ2 − Φ̂7
∂3q0

∂ξ∂ζ2 , (A 10)

∂∆1

∂ζ
=
∂∆2

∂ξ
, (A 11)

∂2q0

∂ξ2 + λ̂1
∂2q0

∂ξ∂ζ
+ λ̂2

∂2q0

∂ζ2 = −λ̂3
∂∆1

∂ξ
− λ̂4

∂∆2

∂ξ
− λ̂5

∂∆1

∂ζ
− λ̂6

∂∆2

∂ζ
, (A 12)

where we have introduced the constants λ̂i, the slower time-scale τ and the new
coordinate ζ defined by

ζ = Z − ∂Ω0

∂β0
T. (A 13)

The equation (A 12) and constants λ̂i are obtained from solving the continuity equa-
tion (A 2) for the mean-flow term, v̄2, and applying the impermeability condition at
the boundaries y = ±1.
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