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Pulsatile jets
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We consider the evolution of high-Reynolds-number, planar, pulsatile jets in an
incompressible viscous fluid. The source of the jet flow comprises a mean-flow
component with a superposed temporally periodic pulsation, and we address the
spatiotemporal evolution of the resulting system. The analysis is presented for both
a free symmetric jet and a wall jet. In both cases, pulsation of the source flow
leads to a downstream short-wave linear instability, which triggers a breakdown of
the boundary-layer structure in the nonlinear regime. We extend the work of Riley,
Sánchez-Sans & Watson (J. Fluid Mech., vol. 638, 2009, p. 161) to show that the
linear instability takes the form of a wave that propagates with the underlying jet
flow, and may be viewed as a (spatially growing) weakly non-parallel analogue of the
(temporally growing) short-wave modes identified by Cowley, Hocking & Tutty (Phys.
Fluids, vol. 28, 1985, p. 441). The nonlinear evolution of the instability leads to wave
steepening, and ultimately a singular breakdown of the jet is obtained at a critical
downstream position. We speculate that the form of the breakdown is associated with
the formation of a ‘pseudo-shock’ in the jet, indicating a failure of the (long-length
scale) boundary-layer scaling. The numerical results that we present disagree with
the recent results of Riley et al. (2009) in the case of a free jet, together with other
previously published works in this area.
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1. Introduction
We consider the downstream evolution of a pulsatile planar jet in an incompressible,

viscous fluid at a high Reynolds number. We investigate the effects of pulsation on
two closely related jet flows, namely the symmetric free jet and the wall jet. The free
jet solution is often attributed to Bickley (1937) and the wall jet to Glauert (1956);
however (as highlighted by a referee to this paper) both solutions can be traced back
to Schlichting (1933) (free jet) and Akatnov (1953) (wall jet). In both of these cases, we
allow the source of the jet to comprise a mean component with a superposed pulsatile
component. The problem is formulated as a two-dimensional, unsteady boundary
layer, with one parameter associated with the dimensionless frequency of pulsation,
and another which is a measure of the amplitude of pulsation.

This work was motivated by Riley et al. (2009, hereafter referred to as RSW),
who addressed the same problem in the specific case of the free jet. The analysis of
RSW neatly extracted the intricate structure of the linearised perturbation (in the far-
downstream region), in the (linear) limit of small pulsation amplitude. It was shown
that the linear perturbation consisted of infinitely many spatially decaying modes,
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together with a single growing mode. This spatially growing mode was discarded
as not being relevant on the basis that numerical solutions of the two-dimensional,
nonlinear, boundary-layer equations did not show its presence in the downstream
development. However, our contention in this paper is that the mode is relevant and
should have been observed in the numerical solutions of the nonlinear boundary-
layer system. Other related (numerical) works that have failed to reveal the existence
of growing eigenmodes include Marzouk et al. (2006a), which considered the effect
of pulsation on a high-Reynolds-number planar jet (with heat transfer effects also
included). This work was extended to axisymmetric geometries by them in Marzouk
et al. (2006b).

It is known that the unsteady, two-dimensional classical boundary-layer equations
possess a short-wave temporal instability for velocity profiles that contain a local
maximum away from a boundary, see Cowley et al. (1985). This mode manifests itself
as a short-wave viscous instability with unbounded temporal growth rates. It seemed
plausible that the Cowley et al. (1985) modes of asymptotically short wavelength and
high frequency (such that the phase speed of the instability is of the order of the base
flow) could have an analogue in periodically forced flows, where one seeks downstream
spatial growth. Our claim is that the numerical results of RSW are erroneous, and
that a downstream instability is found in the form of a propagating wave for both
linear and nonlinear pulsation. Therefore, the growing (linear) eigenmode of the
RSW analysis cannot be ignored in the nonlinear context. With some extensions,
comparable to the work of Cowley et al. (1985), we consider a more general jet-like
profile and make comparisons with our numerical results. We address the nonlinear
evolution of the instability numerically and speculate that a breakdown is achieved
at a finite downstream position.

The structure of this paper is as follows. In § 2, we reformulate the problem of
pulsatile jets in a general manner that allows consideration of flows of both free-jet
and wall-jet types. In § 3, we present the results of the asymptotic analysis of RSW,
but reinterpret them in the context of the short-scale instability described by Cowley
et al. (1985); the analysis is extended to cover both types of jet flows. We present
numerical results that show the downstream development of a linear instability that
is consistent with the previously discarded eigenmode in the free jet and its analogue
in the wall jet. Section 4 presents numerical results in the nonlinear regime, via a
spectral decomposition method, and we show clear evidence that the two-dimensional
boundary-layer system breaks down at a critical downstream location; some discussion
of two comparable (temporal) initial-value approaches is also given (which confirm
the conclusions from our spectral computations). In § 5, we make some concluding
remarks.

2. Formulation
We begin with the two-dimensional boundary-layer equations for a viscous

incompressible fluid of kinematic viscosity ν and formulate the problem in terms
of a dimensional streamfunction ψ∗(x∗, y∗, t∗). Here (x∗, y∗) is a Cartesian coordinate
system and t∗ denotes the dimensional time. We consider an imposed streamwise
velocity U , transverse length scale h and a pulsation frequency Ω , such that ψ∗ = Uhψ ,
y∗ = yh, x∗ = Uh2x/ν (implying that the Reynolds number Re = Uh/ν, which is
of course assumed large) and t∗ = t/Ω . This leads to the dimensionless governing
equations

Sψyt + ψyxψy − ψyyψx − ψyyy = 0, (2.1a)
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Figure 1. Typical streamwise profiles of (a) the steady symmetric free jet and (b) the steady
wall jet. As reviewed in § 2.1, the peak streamwise velocity in each case is Uc(x), which decays
like (x + xo)

1−2b , where x = − xo is the ‘virtual’ origin of the jet. The position of this maximum
in the boundary layer is such that yc ∼ xb , where b =3/4 for the wall jet, and yc = 0 for the
free jet.

where S =Ωh2/ν and, for a jet flow,

ψy → 0 as y → ∞. (2.1b)

Along the plane y = 0 we will consider two scenarios, we either impose conditions
appropriate for a symmetric free jet,

ψ = ψyy = 0 on y = 0, (2.1c)

or no-slip and impermeability conditions appropriate for a wall jet,

ψ = ψy = 0 on y = 0. (2.1d )

To fully specify the problem, we also require the source flow profile

ψ = ψsource(y, t) at x = 0, (2.1e)

and if considering the (temporal) initial-value problem we would also require the state
of the system at t =0:

ψ = ψinit (x, y) at t = 0. (2.1f )

2.1. Steady base-flow jet profiles

In the absence of unsteadiness, there are classical similarity solutions for the free
jet and wall jet as presented by Bickley (1937) and Glauert (1956), respectively; see
figure 1. As discussed by Glauert (1956), one can seek a solution in the form

ψ = (x + xo)
1−bG(Y ), (2.2a)

Y =
y

(x + xo)b
, (2.2b)

where b is to be determined and x = − xo is some (in our case ‘virtual’) origin of the
jet. From (2.1a) we observe that the base-flow function G(Y ) satisfies

G′′′ + (1 − b)GG′′ + (2b − 1)G′2 = 0; (2.2c)
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note that the above equation is invariant under the rescaling

G → CG, Y → Y/C, (2.2d )

for any constant C.

2.1.1. The free jet: b =2/3

In the case of a free jet, integrating (2.2c) once and applying the boundary conditions
G(0) = G′′(0) = G′(∞) = 0 is sufficient to show that b = 2/3, which is equivalent to the
momentum flux being independent of x. Furthermore, the solution can be found
analytically, yielding

G(Y ) = 91/3 tanh

(
91/3

6
Y

)
. (2.3)

In this derivation, we have chosen a specific rescaling (2.2d) such that the jet has unit
momentum flux, and so by making this choice our results are directly comparable to
those of RSW.

2.1.2. The wall jet: b = 3/4

In the case of a wall jet, we integrate (2.2c) once, multiply by G′(Y ) and integrate
again, which on applying the boundary conditions G(0) = G′(0) = G′(∞) = 0 shows
that b =3/4 (on the assumption of no reverse flow in the jet). This condition is
equivalent to implying that the flux of the exterior momentum flux (arguably, a
somewhat unintuitive concept) is independent of x. Although an analytic solution
for Y as a function of G can be provided (see Glauert 1956), it is often simpler to
solve (2.2c) numerically. As with the free jet, we could choose a rescaling (2.2d) such
that the quantity conserved (the aforementioned flux of the exterior momentum flux)
is unity; however, it is more common in this case to simply require that G(∞) = 1.
This is equivalent to solving (2.2c) as an initial-value problem with the starting data
G(0) = G′(0) = 0 and G′′(0) = 1/72.

2.2. Unsteady pulsatile flow

Following RSW, we now consider the effects of a pulsatile source on the downstream
development of the jet. In particular, we solve the unsteady system (2.1a) for x > 0
with a source flow at x = 0 that takes the form of a self-similar jet profile with xo =1
and an amplitude A(t). We assume that A(t) consists of a mean-flow component and
a superposed periodic pulsation of amplitude ε and unit dimensionless frequency. In
general, we allow the pulsation-amplitude parameter ε to be O(1), and hence

ψsource(y, t) = A(t)G(y) = (1 + εcost) G(y), (2.4)

where G is the appropriate solution for either a wall jet or a free jet. Our observation
(in the light of numerous numerical experiments undertaken by the authors) is that
the exact nature of the source flow at x = 0 does not qualitatively affect the results
that we present below.

3. Small-amplitude pulsation: ε � 1

In the limit of ε → 0, we can seek a solution in the form

ψ(x, y, t) = (1 + x)1−bG

(
y

(1 + x)b

)
+ εψ̂(x, y, t) + O(ε2), (3.1a)

ψ̂(x, y, t) = ψ̃(x, y) eit + c.c., (3.1b)
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where G is the appropriate mean component of the free or wall jet flow, with
b =2/3 or 3/4 respectively (as discussed above), and ψ̃ is the perturbation due to the
pulsation. When ε = 0, the downstream development of the streamfunction clearly
remains self-similar, albeit relative to a virtual origin at x = − 1. The equations and
conditions to be satisfied by the perturbation ψ̃ are simply the linearisation of the
full system (2.1).

In the specific case of b = 2/3 (a free jet), the work of RSW developed the far-field
structure for linear periodic perturbations in the limit ε → 0. For the problem as
formulated herein, the RSW analysis shows that the perturbation, in an inner layer
adjacent to the axis of symmetry, can be expanded in the form

ψ̃ ∼ ξkn exp

(
− i

8
ξ +

(
1

4
− n

) √
i ξ 1/2

)
(f0(ζ ) + O(ξ−1/2)), (3.2a)

for ξ 	 1, where ζ =
√

iξG2 is an inner variable and

ξ =
4S

9
(9 (x + 1))4/3 . (3.2b)

In (3.2a), n= 0, 1, . . . indicates the mode number and kn is a constant associated with
mode n; clearly, the exponential leads to downstream growth for n= 0, but decay for
all n � 1.

Crucially, much of the analysis of RSW discards the n= 0 mode and only considers
the n= 1 mode. The claimed irrelevance of the n=0 downstream mode was supported
by numerical results of the full system (2.1a), which showed a decay of the perturbation
in the downstream flow that agreed with the n= 1 mode. Interestingly, RSW did
observe the n= 0 mode in computational solutions of the linearised problem (p. 167,
§ 4 of RSW), but ignored these because they were not found in the nonlinear analogue;
no mechanism for nonlinear inhibition of the n= 0 mode was suggested. As mentioned
in the Introduction, the related work of Marzouk et al. (2006a ,b) also failed to find
evidence of this downstream-growing eigenmode in numerical results (albeit in a
thermally influenced jet).

Our contention here is that the n= 0 mode is physically relevant and cannot (in
general) be ignored, representing as it does, a growing instability in the downstream
evolution of the jet. We therefore believe that the numerical results of RSW (and other
previous works in the area) are in error, and that an accurate solution of the system
(2.1a) will reveal the n= 0 instability in both the linear and nonlinear problems. We
also show that the instability is sufficiently generic to have an analogue in the wall-jet
system.

Numerical results for the linearised problem, which confirm the downstream
development of the n= 0 mode, are shown in § 3.2. However, before describing
these, we first present a discussion of the downstream modes in a general planar-jet
flow and relate the downstream instability to that discussed by Cowley et al. (1985).

3.1. The downstream eigenmodes

To address the downstream evolution of the perturbation ψ̃(x, y), it is convenient to
make the following substitutions:

ψ̃(x, y) = (x + 1)1−bf (X, Y ), (3.3a)

X = (x + 1)2b, (3.3b)
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where Y is defined by (2.2b). The linear perturbation equation is then

(1 − b)(f G)YY − 2(2 − 3b)fY G′ + fYYY − iXSfY + 2bX(G′′fX − G′fXY ) = 0, (3.3c)

where f (Y = 0) = fY (Y → ∞) = 0 and either fYY (Y = 0) = 0 for the free jet (b = 2/3)
or fY (Y =0) = 0 for the wall jet (b = 3/4). This equation is essentially (after some
rescaling) equation (3.8) of RSW; however, here it applies (via b) to both classes of
planar jets.

For a general planar jet profile, there is a single point of vanishing shear at Y = Yc,
where G′′(Yc) = 0; for the free jet, this point is obviously at Yc = 0. In the bulk of the
domain with Y >Yc, a leading-order balance far downstream is between the last three
terms of (3.3c) for X 	 1. We can seek a periodic travelling-wave solution of the form

f (X, Y ) = exp(−iΘ̄(X))(f0(Y ) + · · · ), (3.4)

where Θ̄X = K + · · · is the wavenumber. It is straightforward to see that, in such a
region, a solution exists in the form

f0(Y ) ∼ G′(Y ) − G′(Yc), (3.5)

provided that the wavenumber is

K =
S

2bG′(Yc)
. (3.6)

This is a leading-order outer solution that does not satisfy the required conditions
at Y = 0 and a viscous critical layer is required around the point Y = Yc. In the case
of the wall jet, there is an additional region between Y =Yc and the wall for which
the appropriate leading-order solution is f0(Y ) = 0. This outer solution is essentially
equation (5a) from the analysis of Cowley et al. (1985); we shall return to the
contribution of the viscous layer later.

In terms of the unscaled (original) spatial coordinates (x, y), the above solution
corresponds to a streamfunction for the perturbation in the form

ψ̂ ∼ exp(−iθ(x, t) + · · · )(ψ̂0 + · · · ), (3.7)

where the leading-order phase function is

θ(x, t) =
S (x + 1)2b

2bG′(Yc)
− t. (3.8)

Thus, the perturbation (far downstream) is an asymptotically short-scale wave
propagating in the downstream direction with a (large) wavenumber of

k(x) =
S (x + 1)2b−1

G′(Yc)
. (3.9)

We note that this is in agreement with (3.2) (as obtained for the free jet by RSW)
on substitution of b = 2/3, Yc = 0 and G′(Yc) = 31/3/2. The phase speed (cp) of the
instability wave is slow due to the deceleration of the underlying jet flow:

cp(x) = G′(Yc)(x + 1)1−2bS−1 = Uc(x)S−1, (3.10)

where (x + 1)1−2bG′(Yc) = Uc(x) is simply the maximum streamwise velocity of the
wall/free jet base flow at the downstream location x.

Therefore, at leading order, far downstream, the linear perturbation is a neutral
short-scale wave that is propagating at the maximum local speed of the underlying jet
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flow. To obtain the spatial growth of this wave and to determine the attenuation due
to the non-parallelism of the base flow, we have to include the effect of the viscous
layer and higher-order terms.

The behaviour described above has been noted before for short-scale waves in
(effectively parallel) boundary-layer flows by Cowley et al. (1985). They highlighted
that the Tollmien–Schlichting-like wave propagates with the peak streamwise velocity,
with the (temporal) growth rate determined in a viscous critical layer around the
maximum velocity location. In an inner region, the balance is between viscous effects,
fYYY , and the higher-order base flow curvature that arises from XG′′(Y )fX . This leads
to the new region spanned by Ŷ , where

Y = Yc + X−1/4Ŷ . (3.11)

In terms of the original variable y, this translates to

y = (x + 1)bYc + (x + 1)b/2Ŷ ; (3.12)

note that for a free jet (as noted earlier) Yc = 0, again in agreement with RSW.
The results of an analysis in the viscous layer are presented in the Appendix, the

main conclusion of which is that the higher-order terms lead to a spatial growth of
the periodic wave, with a corresponding small correction to the local wavenumber.
The asymptotic form of the perturbation streamfunction, including this downstream
growth, is

ψ̂(x, y, t) ∼ exp(iΘ(X, t))(ψ̂0 + · · · ), (3.13)

Θ(X, t) = −
(

1

2bG′(Yc)
SX − t

)
− i

√
(2b − 1)

2b2G′(Yc)

√
iSX + O(log X). (3.14)

3.2. Numerical solution of the linear system

Numerical solutions in the limit ε � 1 are obtained by solving the linearised form of
(2.1a) for the complex quantity ψ̃ as defined in (3.1). The domain for the computation
is x ∈ [0, x∞] and y ∈ [0, y∞], for some domain truncation x∞ and y∞; as the jet
spreads laterally, y∞ must be increased as x∞ is increased. The linear problem was
rewritten as a system of first-order equations in the standard form as

M3×3 f̃
x
+ f̃

y
= R̃, (3.15)

where f̃ = (ψ̃, ψ̃y, ψ̃yy), and the matrix M3×3 and the vector R̃ both depend upon the
base flow G and position x, y.

The form (3.15) is straightforward to solve by a standard Crank–Nicolson scheme,
marching in x from the known source flow at x = 0. Equation (3.15) is discretised
at the mid-nodal points (xj−1 + xj )/2 and (yk−1 + yk)/2, using second-order finite
differencing. This results in a banded matrix problem with six diagonals at each xj

location, which is solved using the complex banded solver from the LAPACK library,
before moving to the next downstream position xj+1. The steps taken to validate
the numerical solutions presented here are discussed in § 5; all results presented are
independent of the properties of the computational mesh.

In figure 2, we show the downstream evolution of the streamfunction at the edge
of the boundary layer for increasing x. It is clearly seen that an instability is obtained
both for the free jet and the wall jet. The qualitative features of the instability are the
same in both cases, with spatial oscillations of decreasing wavelength being observed,
together with rapid spatial growth.
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Figure 2. The downstream evolution of the real part of the (linear) perturbation stream-
function, ψ̃r (x, y → ∞), at the edge of the boundary layer in the linear limit, with S = 2.
Shown are (a) the free jet and (b) the wall jet.
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Figure 3. The leading-order local wavelength λ(x) in the downstream evolution of the linear
perturbation for S =2 in (a) the free jet and (b) the wall jet. In both cases, the solid line is
λ(x) = 2π/k(x), where k(x) is determined from (3.9) whilst the dashed line is obtained from the
numerical solution by computation of the locations xi where ψ̃r (xi, y → ∞) = 0.

In figure 3, we compare the downstream evolution of the local wavelength
λ(x) = 2π/k(x), where k(x) is the local wavenumber, with the asymptotic prediction of
(3.9). The local wavelength of the computational solution for ψ̃(x, y) is taken to be
double the separation of two consecutive zeros of ψ̃r (x, y → ∞). The interpretation of
the instability as a propagating wave of local wavenumber (3.9) is clearly in agreement
with the numerical solution when x 	 1.

In figure 4, we show the downstream evolution of the real part of the
perturbation streamfunction evaluated at the boundary-layer edge; ψ̃(x, y → ∞).
The computational results have been rescaled with the asymptotic prediction for
x 	 1 clearly showing a saturated signal, which, as we have already shown in figure 3,
has a local wavelength that is also in agreement with the asymptotic description.
Similar agreement can be found for other values of S.

The conclusion from the computation of the linearised problem is clearly that the
n= 0 unstable eigenmode is the dominant response far downstream in both the wall
jet and the free jet. We now proceed to the nonlinear problem bearing in mind that
the results of RSW showed no instability of the free jet to finite amplitude pulsation
of the source flow.
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Figure 4. The same data as in figure 2, but rescaled by the far-field asymptotic form of the
unstable n= 0 mode. These results are from parabolic marching of the linear system, with
S =2 and (a) b =2/3, (b) b = 3/4. Here, E(x) =X1/4 exp([(S(2b − 1)X)/(4b2G′(Yc))]

1/2) is the
asymptotic prediction for the amplitude of the wave perturbation for large X.

4. Nonlinear pulsation: ε = O(1)

For the nonlinear pulsatile flow, we may take a spectral decomposition in the form

ψ(x, y, t) =

m=M∑
m=−M

ψm(x, y) eimt , (4.1)

where M is a suitably chosen truncation of the series (typically we chose M = 50) and
ψ−m = ψ (c)

m (i.e. a change of sign of the index corresponds to complex conjugation).
The computational task is to march (parabolically) the fully nonlinear problem (2.1a),
subject to the following constraint at the source of the jet:

ψ0(x = 0, y) = G(y), ψ1(x = 0, y) =
ε

2
G(y),

ψm(x = 0, y) = 0, for m = 2, . . . , M,

⎫⎬
⎭ (4.2)

where G is the appropriate free/wall jet solution of (2.2c). The boundary conditions
at each downstream location are that ψm(y = 0) = ψmy(y → ∞) = 0 and either
ψmyy(y = 0) = 0 for b = 2/3 (free jet) or ψmy(y = 0) = 0 for b = 3/4 (wall jet), where
m =0, . . . , M .

Again, we apply a standard second-order scheme, with mid-point evaluation of the
equations on the truncated computational domain [0, x∞]× [0, y∞]. At each x station,
the nonlinear boundary-value problem for ψ0, . . . , ψM is solved by iteration (with
complex conjugation invoked for m < 0). The iteration scheme involved computing
each value of m in turn (starting with m = 0), repeatedly until convergence was
achieved. Sparseness was fully exploited in the solution of the algebraic system.

Figures 5(a) and 5(b) show results for the real and imaginary components
(respectively) of ψm(x, y → ∞) in the case of a free jet, with S = 2 and ε =0.05,
for m =0, 1, 2, 3. Just beyond the final downstream location shown, the computations
ceased to converge. This convergence failure was found to be a consistent feature
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Figure 5. The downstream evolution of ψm(x, y → ∞) for m= 0, 1, 2, 3 and S = 2. The real
and imaginary parts are shown in (a) and (b) respectively for the free jet with ε = 0.05, whilst
(c) and (d ) show the real and imaginary parts (respectively) for the wall jet with ε = 0.005.
Note that, for clarity compared to m= 0, the values for m= 1, 2, 3 have all been increased by
a factor of 30.

in all of our nonlinear spectral computations covering a broad range of values of
ε and S. The same feature was also observed in the nonlinear wall-jet calculations
for ψm(x, y → ∞), as presented in figures 5(c) and 5(d ) with S =2 and ε = 0.005, for
m = 0, 1, 2, 3. In both the above sets of results, downstream oscillation and growth
is observed in the m > 0 modes, although the failure of the numerical scheme occurs
considerably earlier in the case of the wall jet (given the same value of ε). Based purely
on our previous analysis for the downstream growth of linearised perturbations, we
should expect a more rapid development in the case of a wall jet, primarily because the
peak downstream velocity G′(Yc) is an order of magnitude smaller in our formulation.

To investigate the failure of the numerical scheme further, let us revisit the (free-jet)
case considered in figures 5(a) and 5(b), in particular the higher modes, m =10, 20, 30,
40. Results for the real and imaginary components of ψm(x, y → ∞) are presented in
figures 6(a) and 6(b), respectively (note the scalings employed, in order to adequately
present these results on the same scale). The rapid oscillation and growth of the
higher modes is clearly seen, very much in line with the linearised results described
earlier in this paper (higher modes can loosely be regarded as being equivalent to
larger values of S). Similar effects were observed in the corresponding wall-jet results.

A close observation of the results described above, and others produced from
computation, revealed no singular/unusual behaviour in any of the physical quantities
at the point of iterative-convergence failure. However, as a test of the convergence
of the Fourier expansion (4.1), figure 7 shows a simple ratio test for the free-jet case.
Specifically, we examine the ratio |ψ48(x, y → ∞)|/|ψ47(x, y → ∞)|; this figure clearly
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m= 10, 20, 30, 40, S = 2 and ε = 0.05. Note that values for m= 20, 30, 40 have been increased
by factors of 10, 100 and 1000, respectively, and that the range of x here is truncated to only
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Figure 7. The ratio test for ψm(x, y → ∞) using the 47th and 48th modes with S = 2, ε = 0.05,
b = 2/3 (a free jet). Note that other choices of mode number and other physical quantities
provide consistent results. The dashed line indicates an extrapolation to predict the critical
downstream position.

suggests a monotonic growth in this quantity. Other values of m, and other (physical)
quantities, were analysed, which led to very similar results as those presented in
figure 7. Clearly, a breakdown of the series (4.1) must occur when the ratio test
reaches unity. Figure 7 indicates an extrapolated value for which the series fails,
which appears to occur approximately at x = 3.45.

It is interesting to investigate the effect of varying ε on the location of the predicted
breakdown of (4.1). Figure 8 shows the critical downstream position, with results
obtained by extrapolating the ratio test results (to determine the x-location where the
ratio test yields unity) over a range of pulsation amplitudes ε, and it is clear that as
ε → 0, xc → ∞, as indeed it must.
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Given that the breakdown is observed at small values of the pulsation amplitude
ε, it is instructive to consider the development of a solution in the following form:

ψ(x, y, t) = (1 + x)1−bG

(
y

(1 + x)b

)
+ εψ11(x, y) eit

+ ε2(ψ20(x, y) + ψ22(x, y) e2it ) + · · · . (4.3)

From our previous discussion of the linearised modes, the first harmonic (in the linear
limit) is such that

ψ11(x, y) ∼ exp(γ
√

SX)ψ̄11(x, y), (4.4)

where ψ̄11 grows at most algebraically in the downstream direction and X is again
defined by (3.3b). In this expression, the constant γ =((2b − 1)/(4b2G′(yc))

1/2 (as
determined in the Appendix).

Obviously, the response of the system becomes fully nonlinear, irrespective of the
pulsation amplitude, if εψ11 = O(1). Furthermore, the downstream forced response of
the mth harmonic, for example, will be of the form

εmψmm(x, y) ∼ exp(mγ
√

SX)ψ̄mm(x, y), (4.5)

where ψ̃mm grows at most algebraically with x. Hence, all terms in (4.3) can become
O(1) simultaneously at the critical downstream location, xc, which is a function of
the pulsation amplitude ε and S. This breakdown of (4.3) will occur when the ratio

εm+1 exp((m + 1)γ
√

SX)

εm exp(mγ
√

SX)
(4.6)

is not exponentially small, which suggests a critical location of

xc =

(
− 1

γ
√

S
log ε

)1/b

+ O(1) . (4.7)
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Although this asymptotic argument might first be regarded as heuristic, we do
not believe this to be the case. Given that the linear regime is rather long
(O((−(1/γ

√
S) log ε)1/b)), it is our assertion that as soon as the flow becomes fully

nonlinear, the breakdown occurs rather quickly (i.e. on a shorter length scale).
In figure 8, we include the prediction (4.7) for comparison with the numerically

predicted breakdown point of the series (4.1). The agreement is encouraging, especially
given the preponderance of logarithmic terms, which lead to an O(1) correction to xc.

4.1. Initial-value calculations with ε = O(1)

To pursue the nature of the breakdown in the vicinity of x = xc further, we consider
an initial-value computation rather than a spectral decomposition. It is worth
emphasising that the results of Cowley et al. (1985) are sufficient to show that
such an approach should be susceptible to a temporal short-wave instability at high
resolution; therefore, some care is required in undertaking these computations.

To shed some light on this apparent breakdown, we used two independent numerical
schemes. The first was a slight modification of the method of Ruban & Vonatsos
(2008), in which the boundary-layer equations are formulated in conservative form
together with (first-order accurate) marching in x and t . The original formulation of
Ruban & Vonatsos (2008) also appears to be first order in y; however, we modified
this slightly, by discretising the continuity equation at a mid-nodal point, thereby
ensuring second-order accuracy in y. The second scheme is a standard Keller box
method (see Keller 1978), in which we write the nonlinear system in the form

M(1)
3×3 f

t
+ M(2)

3×3 f
x
+ f

y
= R , (4.8)

where f =(ψ, ψy, ψyy), M(1)
3×3 is a constant mass matrix and the matrix M(2)

3×3 and the
vector R depend upon f . The nonlinear system (4.8) is solved by Newton iteration

after discretisation at the mid-nodal points (ti−1 + ti)/2, (xj−1 +xj )/2 and (yk−1 +yk)/2,
with second-order-accurate central differencing of all derivatives. At each time level
ti , we sweep through xj and, for each downstream position, solve a banded matrix
problem (with six diagonals, using the double-precision LAPACK banded solver) until
(4.8) is satisfied at the mid-nodal point to a tolerance of less than 10−8. Although all
the results we present in this section are for the free jet, we have performed similar
computations for the wall jet and found the same qualitative behaviour.

The initial condition is taken to be a self-similar jet flow perturbed by just the first
harmonic:

ψ(x, y, t = 0) = (1 + x)1−bG

(
y

(1 + x)b

)
+ εψ1(x, y), (4.9)

with all other boundary conditions as before. Here ψ1 is determined from the linearised
equations, but it is then imposed at finite amplitude as the initial condition in the
nonlinear initial-value problem, i.e. ψ1(x, y) = ψ̂(x, y, t =0). On marching forward
in time, and discarding any initial transients, we can then examine the spatial
development of the flow once the solution is periodic in time.

In figure 9, we show a cross-section of the downstream velocity of the free jet,
u(x, y, t) =ψy , as measured at the arbitrary point of y = 6. Because we are presenting
the off-axis velocity, and the jet is thickening downstream, the value increases with x

over the range shown. The profiles are shown at times t = 0, π/2, π, 3π/2 during one
cycle of the periodic flow.
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Figure 9. The evolution of u(x, y =6, t) over one period of the motion as obtained from a
nonlinear initial-value computation for the free jet with ε = 0.05, S = 2. The results are shown
for x ∈ [0, xc], where xc is the point predicted in figure 7 for the failure of the spectral
decomposition (3.1). The solid line represents a solution obtained using the second-order
Keller box scheme with grid sizes 
x = 1/100, 
t = π/128, whereas dashed lines show
results (at just one time value) of the first-order scheme with spatial/temporal step sizes
of 
x =1/200, . . . , 1/1600 and 
t = π/256, . . . , π/2048.

There is some suggestion in the results of figure 9 that the breakdown is associated
with wave steepening. The downstream flow velocities remain O(1), but the streamwise
gradients of the u-velocity component become increasingly large.

To view this wave steepening in more detail, we examine the perturbation to the
streamwise velocity due to the O(ε) pulsation:

upert (x, y, t) = u(x, y, t) − ufree(x, y), (4.10)

where ufree is the well-known steady similarity solution that is achieved in the absence
of any pulsation (i.e. when ε =0). In figure 10(a), we show the downstream evolution
of upert for t =11π/8, as measured on the axis of symmetry y =0 for the case of
ε = 0.05 and S = 2. The figure also highlights the nodes, at which upert = 0, by the
open/filled circular data points. Of key importance to the speed of propagation of
these nodes, in the nonlinear regime, is the sign of the quantity

µ =
∂upert

∂x
. (4.11)

In figure 10(b), the open circle denotes the nodes in expansive regions with µ > 0
whilst filled circles denote nodes in compressive regions with µ < 0. In figure 10(b),
we track the speed of downstream propagation of these nodal points at the same
parameter values of ε = 0.05 and S = 2. In the linear regime, the nodal points obviously
propagate with a speed that is independent of the sign of µ, but the influence of
nonlinearity (as shown for ε = 0.05) is to decrease the propagation speed where µ < 0
and to increase it where µ > 0. The net effect of nonlinearity is therefore an evolution
towards an ‘N wave’ profile in the perturbation to the streamwise velocity.
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Figure 10. (a) The perturbation to the streamwise velocity component on the (free) jet axis
(y = 0) at a time t = 11π/8. The wave steepening near x ≈ 3.5 is clearly seen; ε =0.05, S = 2,
b = 2/3. The open/filled circles indicate where upert = 0, with a positive/negative gradient
respectively. (b) The speeds of propagation of the open/filled circles (as shown in a) as a
function of downstream distance. Also shown is the linearised prediction for ε � 1 and the
peak downstream velocity of the free jet ufree(x, y = 0).

As the wave perturbation propagates downstream, a monotonic increase in ux is
achieved, and our conjecture is that ux becomes singular at the breakdown position
x = xc. In support of this conjecture, figure 11 shows the maximum transpiration of the
perturbation at the edge of the boundary layer over one period of the motion. From
mass conservation, if ux → ∞ as x → xc then it is also necessary that v(y → ∞) → ∞
as x → xc. Figure 11 provides strong evidence to support this conclusion and suggests
that the jet boundary layer erupts at x = xc. Note that an estimate of this location, for
the case shown in figures 9 and 11, is xc ≈ 3.45, consistent with the critical location
suggested by figure 7.
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Figure 11. The maximum perturbation to the transpiration at the edge of the (free) jet
measured over one complete period of the motion, as obtained from a nonlinear initial-value
computation with ε =0.05, S =2. The extrapolated breakdown position xc (as presented in
figure 7) is shown at the vertical dashed line. The thick solid line represents a solution
obtained using the second-order Keller box scheme with 
x = 1/100, 
t = π/128, whereas
the thin lines show results of the first-order scheme with spatial/temporal step sizes of

x = 1/200, . . . , 1/3200 and 
t = π/256, . . . , π/4096.

5. Discussion
Inspired by the recent analysis of RSW, this paper discusses the spatiotemporal

behaviour of pulsatile planar jets. We have extended the far-field analysis of RSW
to cover a more general jet flow, considering the wall jet in some detail. The far-
downstream linear response corresponds to a short-wave instability that propagates at
the maximum speed of the downstream jet flow and the spatial growth is determined
in a viscous layer that straddles the point of zero shear in the boundary layer. In
this regard, it appears that the wave is a spatially growing analogue of the temporal
short-wave instability first described by Cowley et al. (1985).

Although our linear asymptotic analysis is in complete agreement with RSW in
the specific case of the free jet, our nonlinear numerical results are in stark contrast.
Our results indicate that the effect of jet pulsation is to trigger a spatially growing
instability that increases rapidly downstream (cf. the linear case). As we disagree on
the numerical evolution of the jet, we have taken great care to validate our numerical
schemes, and in total we have four separate formulations of related problems, each of
which is approached by a different method. We solve the linearised decoupled problem
via second-order-accurate parabolic marching, the nonlinear problem is tackled by
spectral decomposition, and we have two independent formulations of the initial-
value problem. Careful comparisons have shown consistency across all approaches.
Furthermore, we have tested convergence of the nonlinear codes to the known self-
similar base flow in the case of ε = 0 and, although we have not presented the details
herein, we have ensured that the numerical data (from all formulations) satisfy the
(time-averaged) conservation of downstream momentum flux for the free jet (that is,
condition (2.7) as given in RSW).
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We note in passing that our condition at x = 0 is chosen to be simpler than that
tackled by RSW, who chose a smoothed top-hat profile as the source of the jet.
However, we did perform similar calculations, and our experience is that changing
the nature of the jet at x =0 had no effect on any of the dominant features that we
present in this work.

We note that the initial-value problem tackled by RSW should be susceptible to
short-wave modes, i.e. refinement of the numerical scheme should produce temporally
growing, short-wave, high-frequency perturbations of precisely the sort predicted by
Cowley et al. (1985). In this regard, we should highlight that the second-order-accurate
scheme that we use in § 4.1 does ultimately develop such modes under continued grid
refinement in precisely the same manner as discussed by Cowley et al. (1985). The
convective nature of these unstable modes means that they eventually propagate
out of the truncated computational domain, leaving behind a temporally periodic
solution.

The short-wave instability present in the numerical initial-value problem is what led
us to tackle the evolution of the boundary-layer system via the spectral decomposition
(4.1). The numerical spatial marching of this system is well-posed as the system
is being forced with a single O(1) frequency/wavenumber perturbation at x = 0;
hence, the only mechanism to generate the higher harmonics is the nonlinearity
of the governing boundary-layer system. Interestingly, the nonlinear cascade to
higher modes coupled to the jet deceleration provides a mechanism to convert
the O(1) frequency/wavenumber input into a short-wave/high-frequency instability
downstream, even for small pulsation amplitudes. The conversion of larger-scale
perturbations to a high-frequency/small-wavelength mode in the downstream limit is
reminiscent of the papers of Lam & Rott (1993) and Ackerberg & Phillips (1972),
in which free-stream oscillations develop into damped short-wave (in the context of
boundary-layer flows) modes downstream, which Goldstein (1983) showed then feed
into Tollmien–Schlichting waves far downstream. However, in this spatially unstable
case, the higher modes grow more rapidly in the downstream direction, which leads
to a sudden breakdown of the boundary layer at a point where all modes in the
spectral decomposition become of comparable order, leading to streamwise length
scale variations comparable to the boundary-layer thickness.

Our conjecture is that the nonlinear breakdown of the pulsatile flow is associated
with a steepening of the wave, with an infinite streamwise gradient being obtained
at a finite downstream location. Such regions have been labelled ‘pseudo-shocks’
by Ruban & Vonatsos (2008), who proposed that discontinuous solutions to the
boundary-layer equations exist. The behaviour we observe here has many similarities
with their results; however, we are not triggering the ‘shock-like’ transition by an
impulsive start, rather it develops naturally from an otherwise smooth flow. Of course
these structures are ‘pseudo-shocks’ in the sense that they only occur over the O(Re h)
boundary-layer streamwise length scale. They are an indication of a breakdown of the
boundary-layer assumption, and a need for a broader set of field equations, notably
one that re-includes a transverse variation in pressure. In the analysis of Ruban &
Vonatsos (2008), the internal structure of the breakdown region was connected to
a square inviscid region of the order of the jet width, and it may prove possible to
develop a similar behaviour here.

Our numerical results indicate that, near the first appearance of the breakdown, the
acceleration and nonlinear advection terms clearly dominate over viscous diffusion
in the bulk of the boundary layer. A further striking feature of our results is that
the position at which |ux | → ∞ appears to be independent of y. As highlighted by
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Ruban & Vonatsos (2008) this second point is inevitable as diffusion in y would act
to smooth any discontinuity that was not perpendicular to the jet axis. However, this
y-independence must constrain the form of the solution in the neighbourhood of any
proposed discontinuity and one may wonder if the breakdown is entirely inviscid in
nature. Let us suppose that the streamfunction has a single propagating discontinuity
at a downstream point xs(t) > xc such that

ψ = ψL(y, t) + (ψR(y, t) − ψL(y, t))H (x − xs(t)), (5.1)

where H is the Heaviside function and R/L are the values to the right/left of the
point xs(t), respectively. On integrating the streamwise momentum equation (2.1a)
from x−

s to x+
s we obtain the constraint

Sẋs(t) =
1

2
(ψ ′

R(y, t) + ψ ′
L(y, t)) − 1

2

(
ψ ′′

R(y, t) + ψ ′′
L(y, t)

ψ ′
R(y, t) − ψ ′

L(y, t)

)
(ψR(y, t) − ψL(y, t)),

(5.2)

where the prime and dot notation indicates differentiation with respect to y and t ,
respectively. The first term in (5.2) is the usual constraint for the nonlinear advection
equation (ut + uux = 0), but for an incompressible flow we must retain a contribution
from the vuy term because v has a delta-function-like response, as evidenced
from (5.1).

For a free jet, the data in figure 10(a) suggest that, on y = 0, if a jump develops
in upert it does so in such a way that uR

pert + uL
pert ≈ 0. Using this approximation and

assuming that (5.2) holds on y = 0, leads to Sẋs(t) ≈ ufree(x, y = 0), which is consistent
with numerical data for the shock speed at the point of formation as shown by the
data of figure 10(b).

However, (5.2) should be applied with some caution. In the simpler case of an
impulsively started free-jet ejected into an otherwise quiescent flow, as considered by
Ruban & Vonatsos (2008), all subscript R terms are zero, and then (5.2) leads to the
solution

ψL = ψ∞(1 − A exp(−2Sẋs(t)y/ψ∞)), (5.3)

for arbitrary ψ∞ and A (if we impose ψL(y = 0) = 0 then A= 1). Clearly, such a
solution cannot satisfy the free jet condition of ψ ′′

L(y = 0) = 0 and diffusion in y must
play a role in a subregion, so the breakdown cannot be entirely inviscid in nature.
In the absence of an asymptotic description of the region around the breakdown
zone, we can only speculate that the solution is discontinuous for the boundary-layer
equations on the basis of numerical evidence.

We conclude with some comments on the experimental realisability of this
breakdown process. The stability of jets has been discussed extensively, see for
example Garg (1981) and Sato (1960). Much of the early work was based on an Orr–
Sommerfeld analysis, with later extensions to include some non-parallelism via WKB-
like methods. The experimental investigation of Sato (1960) employed a loudspeaker
to generate high-frequency disturbances and suggested that the Orr–Sommerfeld
approach is in agreement with growing small amplitude waves at a sufficiently high
Reynolds number. It was noted that these waves ‘develop into turbulence without
being accompanied by abrupt bursts or turbulent spots’. We note that it is common to
consider turbulent jets in a comparable manner to the laminar case, see for example
Glauert (1956), in which case the simple mechanism described herein may be robust
enough to still occur.
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The breakdown process that we present here for pulsatile jets would be a dramatic
event, perhaps linked to roll up of the jet, as was suggested for the impulsively
started flow by Ruban & Vonatsos (2008). It may be possible that this breakdown
can be observed (in either a DNS calculation or experiment) at finite, large Reynolds
numbers, in the absence of perturbations of short wavelength that would otherwise
trigger inviscid modes. However, the breakdown in our work is strongly linked
to the excitation of a single frequency in the source flow and its subsequent
nonlinear development. A more practical view of the significance of our paper is
as a mechanism that ultimately feeds into the short wave Rayleigh modes, leading
to a critical downstream location where significant high-frequency/short-wavelength
perturbations must be present, even for controlled conditions upstream.

Appendix. The viscous layer near Y =Yc

At leading order, we have a perturbation of the underlying jet flow that is periodic
in time, and is a propagating wave with local wavenumber given by (3.9). The spatial
development of the wave as it propagates downstream is determined from (3.3) in
a viscous layer about the location of the maximum streamwise velocity of the jet,
defined to be at Y = Yc.

We anticipate that a new asymptotic region will be defined (about Y = Yc) by
a balance of the curvature of the streamwise velocity profile, i.e. G′′′(Yc), and the
influence of viscous diffusion. In this layer the base flow is

G(Y ) = G(Yc) + (Y − Yc)G
′(Yc) +

(Y − Yc)
3

3!
G′′′(Yc) + · · · , (A 1)

and the required balance is

fYYY ∼ XG′′(Y )fX ∼ X(Y − Yc)G
′′′(Yc)fX, (A 2)

which shows that the layer is spanned by the coordinate Ŷ , where

Y = Yc + X−1/4Ŷ . (A 3)

Following the work of RSW for the free jet, we seek a solution in the form

f (Y ) = f̂ (Ŷ ) = exp(ia1X + a2X
1/2 + · · · )(f̂ 0(Ŷ ) + f̂ 1(Ŷ )X

−1/2

+ · · · ). (A 4)

The leading-order solution is the local wave solution (3.7), for which

a1 = − S

2bG′(Yc)
, (A 5)

as presented previously, whilst at next order we obtain

f̂ 0Ŷ Ŷ Ŷ + CŶ f̂ 0 −
(

C

2
Ŷ 2 − λ

)
f̂ 0Ŷ = 0, (A 6)

where C = i2bG′′′(Yc)a1 and λ= −bG′(Yc)a2 is the eigenvalue to be determined.
We note that (A 6) is, in essence, equation (7a) in Cowley et al. (1985), and they

construct a solution in their case. In the present case, we note that (A 6) can be reduced
to a standard form by transforming to a rescaled coordinate z = Ŷ 2, differentiating
with respect to z, then rescaling again via z =

√
2/C ẑ, which leads to

g′′(ẑ) + g(ẑ)

(
− 5

16
+

1

4

√
2

C
λẑ − ẑ2

4

)
= 0, (A 7)
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where g(ẑ) = z5/4f0zz(z), and f0(z) = f̂ 0(Ŷ ). Equation (A 7) is Whittaker’s equation,
with solutions WK,3/4 and MK,3/4, where K = λ/

√
8C. As discussed by RSW, symmetry

of the solution local to Ŷ = 0 requires that K = (1/4) − n, so the leading eigenmode is
n= 0, which provides

a2 =
√

i

√
(2b − 1)S

2b2G′(Yc)
. (A 8)

This value of a2 determines the spatial downstream growth of the wave, which is
exp(a2r

√
X), where a2 = a2r + ia2i . In obtaining (A 8) we have used (2.2c) to rewrite

the base flow curvature solely in terms of the maximum streamwise velocity of the
jet. Finally we note that on setting b = 2/3 and Yc =0, which is a free jet for which
G′(Yc) = 31/3/2, we recover the downstream growth predicted by (3.2).

In (A 4), if we continue to higher order, then the appearance of logarithmic terms
leads to an algebraic attenuation of the downstream growth. We do not present the
details here, and refer the interested reader to the more detailed discussion of RSW.
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