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We consider the temporal evolution of a viscous incompressible fluid in a torus of
finite curvature; a problem first investigated by Madden & Mullin (J. Fluid Mech.,
vol. 265, 1994, pp. 265–217). The system is initially in a state of rigid-body rotation
(about the axis of rotational symmetry) and the container’s rotation rate is then
changed impulsively. We describe the transient flow that is induced at small values
of the Ekman number, over a time scale that is comparable to one complete rotation
of the container. We show that (rotationally symmetric) eruptive singularities (of the
boundary layer) occur at the inner or outer bend of the pipe for a decrease or an
increase in rotation rate respectively. Moreover, on allowing for a change in direction
of rotation, there is a (negative) ratio of initial-to-final rotation frequencies for which
eruptive singularities can occur at both the inner and outer bend simultaneously.
We also demonstrate that the flow is susceptible to a combination of axisymmetric
centrifugal and non-axisymmetric inflectional instabilities. The inflectional instability
arises as a consequence of the developing eruption and is shown to be in
qualitative agreement with the experimental observations of Madden & Mullin (1994).
Throughout our work, detailed quantitative comparisons are made between asymptotic
predictions and finite- (but small-) Ekman-number Navier–Stokes computations using
a finite-element method. We find that the boundary-layer results correctly capture the
(finite-Ekman-number) rotationally symmetric flow and its global stability to linearised
perturbations.
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1. Introduction
The content of this paper is directly motivated by the work of Madden & Mullin

(1994) (hereinafter referred to as MM), which considered the internal flow induced by
the sudden rotation of a toroidal container filled with an incompressible Newtonian
fluid. Their work was largely experimental in nature, capturing the flow response by
a combination of flow visualisation and laser-Doppler velocimetry methods. Numerical
results were also presented, but computational restrictions were such that they could
not be directly related to the experimental data across the full parameter range studied.

† Email address for correspondence: richard.e.hewitt@manchester.ac.uk

mailto:richard.e.hewitt@manchester.ac.uk


Unsteady flow in a rotating torus 89

Subsequent to a rapid linear ramp of the frequency of the container, from a state
of rest to a specified angular frequency, a number of features were noted by MM. At
sufficiently large values of the Reynolds number (based on the mean speed of the torus
and its (minor) radius), the flow rapidly became disordered, but did so through a well-
defined sequence of events. In the initial stages an axisymmetric ‘front’ was observed
to develop at the outermost radius of the toroidal pipe. This front propagated radially
inwards away from the wall, before small-scale waves appeared in the around-torus
direction, breaking the rotational symmetry of the flow. The rapid growth of these
waves led ultimately to three-dimensional disordered flow (figure 19 of their paper
presents a sequence of flow visualisation pictures that nicely captures the evolution, as
obtained by a light sheet through the mid-plane of symmetry of the container).

The discussion in MM suggests that, for sufficiently rapid rotation, a second
instability is present at the inner boundary. They argue that a centrifugal instability
is to be expected on the basis of Rayleigh’s criterion, but of course some care is
needed because the criterion only applies for steady, inviscid, axisymmetric swirl flows.
MM speculate that the origin and break-up of the inwardly propagating front has
two potential sources (pp. 241–242): a collisional boundary-layer phenomenon and
a centrifugal instability; however no detailed comparisons were possible to support
either source. In particular, regarding the non-axisymmetric waves, MM propose that
a growing centrifugal instability developing at the inner wall could be advected in the
secondary meridional flow, moving in the cross-sectional plane to the outer wall where
it eventually leads to the wave-like instability.

Rather than restricting attention to the ‘spin-up from rest’ case considered by
MM, we address a broader range of problems in which a transition is made from
a rigid-body rotation at an initial frequency, Ωi, to a second frequency, Ωf , such
that |Ωi/Ωf − 1| = O(1). (Throughout this work we choose Ωf as the natural
frequency; in cases of spin-down to rest (Ωf = 0) one would choose Ωi as the
natural frequency.) The corresponding ‘spin-down to rest’ problem (Ωf = 0) was later
described experimentally by del Pino et al. (2008). Again, propagating fronts were
observed (albeit this time at the inner bend of the torus) and a purely local analysis
showed that a singular eruption of the boundary layer can be qualitatively linked to the
experimental data. In this work we will extend the problems of both MM and del Pino
et al. (2008) to general values of the ratio Ωi/Ωf , describe the full boundary-layer
solution around the entirety of the container wall, and assess the linear stability of
the induced flow to both axisymmetric and non-axisymmetric perturbations. Our aim
is to clarify the origin of the fronts and waves observed by MM by an analysis that
combines asymptotic (boundary-layer) methods with Navier–Stokes computations.

In curved pipes, any axial flow down the length of the pipe must be associated with
a corresponding cross-sectional flow in the meridional plane through an interplay of
viscous drag, centrifugal forcing and pressure gradients. At large Reynolds numbers
(small Ekman numbers), this coupling leads to a boundary-layer behaviour that is often
referred to as ‘collisional’, with meridional flows around the inside of the pipe meeting
on the reflectional plane of symmetry. In the steady entry-flow problem in a curved
pipe, Stewartson, Cebeci & Chang (1980) showed that, in the large-Dean-number
limit, a collisional structure must develop at the inner bend of the pipe at a finite
distance downstream from the entry. This collisional structure is associated with a
finite-distance singularity in the wall boundary layer at the inner equatorial point of
the pipe. Equally one can consider the unsteady fully developed analogue of this
problem, as discussed by Cowley, Van Dommelen & Lam (1990). Again a singular
boundary-layer response is achieved at the inner bend of the pipe, but in this case at
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a finite time. The finite-time singularity of the unsteady flow has many similarities to
the corresponding unsteady singular response described by Banks & Zaturska (1979)
and Simpson & Stewartson (1982) for an impulsively rotated sphere. The singularity
in these problems is interpreted as being directly associated with an eruption of the
boundary layer into the interior core flow.

The configuration that we discuss herein is a special case of more general curved-
pipe flows, a topic that has received a great deal of attention owing mostly to its
relevance to a number of biological and industrial applications. In large part, these
existing investigations have concentrated on either steady flow or pulsatile flow driven
by an internal pressure gradient. Typically the geometry that has received the most
attention is that of small curvature (a loosely coiled pipe) and the steady solution
structure in the limits of small and large Dean number has been clarified, see the
review by Berger, Talbot & Yao (1983). Multiple solution branches are known to exist,
see Yang & Keller (1986), and recent work has clarified the effects of finite pipe
curvature on the steady solution branches (Siggers & Waters 2005) and also identified
multiple periodic solutions (Siggers & Waters 2008).

In contrast to the pressure-driven flows described above, the steady (initial) flow in
a closed torus driven by constant boundary rotation is a rigid-body rotation, which
greatly simplifies any analysis. Indeed, the flow configuration of MM provides a
unique opportunity in which the evolution of a system is complicated by both
eruptive boundary-layer singularities and instabilities, but nonetheless remains open
to investigation by asymptotic methods, as well as providing a simple geometry
for experimental and numerical investigation. The closed (periodic) nature of the
flow domain, together with the initially axisymmetric response, and unambiguously
defined boundary conditions make this problem a rare example in which boundary-
layer singularities, hydrodynamic instabilities, nonlinear Navier–Stokes computations
and experimental data can be combined without any requirement for ad-hoc modelling.

The format of this paper is as follows. In § 2 (and the Appendix) we describe the
coordinate system, governing parameters and boundary conditions for a system that
begins in a rigid-body rotation, prior to an impulsive change in the rotation rate of
the torus at t = 0. In § 3, we use boundary-layer theory to examine the axisymmetric
flow response in the limit of asymptotically low Ekman number, over a time scale
comparable to the rotation period of the container. The axisymmetric evolution of
the entire flow field is considered in § 4, by solving (numerically) the rotationally
symmetric Navier–Stokes equations at finite (but small) Ekman numbers; and good
agreement is found with the predictions made in § 3. In § 5, we consider the non-
axisymmetric (inviscid) instability mechanism for the transient boundary-layer flow
using asymptotic methods combined with numerical Navier–Stokes solutions. Section
6 investigates the relevance of axisymmetric centrifugal instabilities, again via a
combination of asymptotic methods and numerical simulation. Finally, our conclusions
are given in § 7.

2. Formulation
We consider a torus with a centreline (major) radius L and a cross-sectional (minor)

radius a, filled with an incompressible viscous fluid of kinematic viscosity ν, see
figure 1. The fluid and the container are initially in a state of rigid-body rotation
at an angular frequency Ωi. At time t = 0, an unsteady flow is generated by an
impulsive change in the rotation rate of the torus to an angular frequency Ωf , where
|Ωi/Ωf − 1| = O(1). The ultimate state of the system is a rigid-body rotation at the
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FIGURE 1. A cross-section of the torus, with dimensional centreline (major) radius L and
pipe radius a. The outermost point of the torus is at θ = 0, r∗ = a, whilst the innermost
point is at θ = π, r∗ = a. We use a dimensionless coordinate system in which r = r∗/a,
which means that the dimensionless centreline (major) radius of the torus becomes δ−1, where
δ = a/L is a curvature parameter.

new frequency Ωf , but our interest lies in the response of the fluid within the first few
rotations of the container after t = 0.

The flow response will depend on three parameters: (i) the curvature of the pipe
δ = a/L; (ii) the Ekman number (an inverse Reynolds number) Ek = ν/(a2Ωf ); and
(iii) the relative rotation ratio Ωr =Ωi/Ωf . We note that values of Ωr > 1 correspond
to spin-down flows, whereas 0 < Ωr < 1 are spin-up flows. If Ωr < 0 the direction of
rotation reverses; a case sometimes referred to as ‘spin over’.

It is most convenient to work in a toroidal coordinate system (ar, θ, φ) (see figure 1)
and the appropriate dimensionless form of the Navier–Stokes equations is given in the
Appendix, in which we have chosen a as the typical length scale, Ωf a as the typical
velocity scale, Ω−1

f as the time scale and the pressure is non-dimensionalised on the
inertial scale. The dimensionless velocity components corresponding to the coordinates
(r, θ, φ) are labelled (u, v,w) and the initial state of the system is rigid-body rotation:

u≡ v ≡ 0, w=Ωrh(r, θ)/δ at t = 0, (2.1)

where h(r, θ) = 1 + δr cos θ is the (dimensionless) distance from the axis of rotation
relative to the centreline radius L. The boundary conditions for t > 0 are that the torus
rotates at the new frequency:

u= v = 0, w= h(1, θ)/δ on r = 1. (2.2)

The experimental configuration of MM used a toroidal pipe of radius a = 16 mm and
centreline radius of curvature of L = 125 mm, which leads to a curvature parameter,
δ = a/L = 0.128. We shall use this value in all curvature-dependent computations
presented, but we have found that the results are not qualitatively sensitive to the
choice of δ, provided that it is O(1).

We begin our investigation by considering the initial response to the change in
rotation rate; namely, the development of an impulsively generated axisymmetric
boundary layer, adjacent to the container wall, which forms the subject of the next
section.

3. Rotationally symmetric Ek� 1 boundary-layer evolution for t= O(1)

In this section we address the boundary-layer problem by a combination of
asymptotic and numerical methods. If the Ekman number is small then we anticipate



92 R. E. Hewitt, A. L. Hazel, R. J. Clarke and J. P. Denier

that viscous effects should be initially confined to a thin boundary layer of width
Ek1/2 adjacent to the torus wall. Indeed, for t = O(1), the experimental results of MM
indicate that the core fluid in the toroidal container can be assumed to be (initially)
steady at leading order, being a rigid-body rotation at frequency Ωr. Consequently, the
boundary-layer equations have a known pressure distribution in the core of the flow:

p(r, θ, t = 0)=Ω2
r cos θ(rδ−1 + 1

2 r2 cos θ), (3.1)

associated with the initial state of rigid-body rotation.
Throughout this section, we consider only rotationally symmetric motion, so all

velocity components and the pressure are independent of φ. The boundary layer is
most concisely described by the velocity component along the pipe, w(r, θ, t), and a
stream function ψ(r, θ, t) in the meridional plane:

u= 1
hr

∂(hψ)

∂θ
, (3.2a)

v =−1
h

∂(hψ)

∂r
. (3.2b)

The leading-order, boundary-layer equations can now be obtained from (A 1b) and
(A 1c), as given in the Appendix, for a pressure that is constant across the layer and
matches to the external distribution (3.1):

w0t − ψ0θ w0η + ψ0η w0θ + 1
%

sin θψ0 w0η − 1
%

sin θψ0η w0 = w0ηη, (3.3a)

ψ0ηt − ψ0θ ψ0ηη + ψ0η ψ0ηθ + 1
%

sin θψ0 ψ0ηη + 1
%

sin θw2
0 = % sin θ Ω2

r + ψ0ηηη, (3.3b)

where %(θ)= δ−1+cos(θ) is the dimensionless distance from the axis of rotation. Here
we have introduced the boundary-layer coordinate η = (1 − r)Ek−1/2 = O(1), and the
subscript zero indicates that these are the leading terms in a standard boundary-layer
expansion

ψ = ψ0(η, θ, t)Ek1/2 + · · · , (3.4a)
w= w0(η, θ, t)+ · · · , (3.4b)

where higher-order terms in Ek have been neglected. The initial conditions for the
boundary layer are w0 = %Ωr, ψ0 ≡ 0 at t = 0, whilst the boundary conditions are
ψ0 = ψ0η = 0,w0 = % on η = 0 and w0→ %Ωr, ψ0η→ 0 as η→∞.

Rather than solving (3.3) we prefer to transform the system to explicitly include
the influence of pipe curvature and the structure of the secondary flow. We begin by
making the following transformations:

ξ = % (θ)1/4 η, (3.5a)
ψ0 = % (θ)1/4 Ψ (ξ, θ, t) sin θ, (3.5b)

w0 = %(θ)W(ξ, θ, t). (3.5c)

It is convenient to include this low-curvature transformation, because then the steady
solutions of the boundary-layer equations near θ = 0,π are independent of the pipe
curvature. The transformation also ensures that the centrifugal balance (which drives
the secondary flow) is still achieved on setting δ = 0 in the resulting governing
equations; although we will make no assumptions that δ is small in what follows. Our
numerical solution of the boundary-layer equations will use parabolic marching, which
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requires an initial solution at the appropriate attachment point θ = 0 or π. Near these
points (in a mid-plane symmetric flow) ψ ∼ θ or π − θ , and so it is convenient to
introduce the sin θ scaling above. (We use the terms attachment and detachment points
by analogy with the stagnation points of attachment for flow over a bluff body, even
though the flow in question here is a secondary flow in the meridional plane.)

Under the transformations (3.5), the equation (3.3) become

1√
%(θ)

Wt −Wξ (Ψ cos θ + Ψθ sin θ)+WθΨξ sin θ

+ sin2θ

4%(θ)

(
5ΨWξ − 8ΨξW

)=Wξξ , (3.6a)

1√
%(θ)

Ψξ t +W2 −Ω2
r + Ψξ (Ψξ cos θ + Ψξθ sin θ)− Ψξξ (Ψ cos θ + Ψθ sin θ)

+ sin2θ

4%(θ)

(
5ΨξξΨ − 2Ψ 2

ξ

)= Ψξξξ , (3.6b)

subject to the boundary conditions

W = 1, Ψ = Ψξ = 0, on ξ = 0, (3.6c)
W→Ωr, Ψξ → 0, as ξ →∞, (3.6d)

for t > 0, and initial conditions at t = 0

Ψ ≡ 0 and W ≡Ωr. (3.6e)

It is not possible to solve (3.6) subject to an impulsive change in rotation because
there is a singular acceleration at t = 0. The small-time structure is therefore explicitly
built into the formulation by seeking a solution in terms of a Rayleigh-layer coordinate

y= t−1/2 ξ, (3.7a)
Ψ = t3/2Ψ̄ (y, θ, t), (3.7b)

W = W̄(y, θ, t), (3.7c)

which ensures that at t = 0 we have O(1) solutions to Ψ̄ and W̄. In terms of these
variables (3.6) become

1√
%(θ)

(
tW̄t − y

2
W̄y

)
− t2

[
W̄y(Ψ̄ cos θ + Ψ̄θ sin θ)− W̄θ Ψ̄y sin θ

− sin2θ

4%(θ)
(5Ψ̄ W̄y − 8Ψ̄yW̄)

]
= W̄yy, (3.8a)

1√
%(θ)

(
tΨ̄yt + Ψ̄y − y

2
Ψ̄yy

)
+ W̄2 −Ω2

r + t2

[
Ψ̄y(Ψ̄y cos θ + Ψ̄yθ sin θ)

− Ψ̄yy(Ψ̄ cos θ + Ψ̄θ sin θ)+ sin2θ

4%(θ)
(5Ψ̄yyΨ̄ − 2Ψ̄ 2

y )

]
= Ψ̄yyy, (3.8b)

with boundary and initial conditions given by the equivalent expressions to equations
(3.6c)–(3.6e).

It is now possible to solve the boundary-layer system for t > 0, θ ∈ [0,π],
y ∈ [0,∞) from an initial condition of rigid-body rotation, with an impulsive change
in the container rotation rate applied at t = 0. We solve (3.8) numerically for t ∈ [0, 1]
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then use the solution at t = 1 as the initial data in the numerical solution of (3.6) for
t > 1. To begin the computation we require the initial data (for all θ ∈ [0,π]), which
are found by solving the leading-order form of (3.8); that is, we set t = 0.

3.1. The initial impulsive response for t� 1

Some important features of this flow can be highlighted by examining the leading-
order response in the limit t� 1, which is determined from (3.8) by setting t = 0.
Under these conditions, the equations may be further rescaled to remove all explicit
dependence on the curvature, which plays a lesser role in the developing Rayleigh
layer because it is thin. The remaining terms in (3.8) will be retained under the
rescaling y= % (θ)1/4 Ŷ , Ψ̄ = % (θ)3/4 Ψ̂ and W̄ = Ŵ, in which case

ψ = Ek1/2t3/2%(θ)Ψ̂ (Ŷ) sin θ + · · · , (3.9a)

w= %(θ)Ŵ(Ŷ)+ · · · , (3.9b)

and r = 1− Ek1/2t1/2Ŷ . The leading-order equations are

− Ŷ

2
ŴŶ = ŴŶŶ, (3.9c)

Ψ̂Ŷ −
Ŷ

2
Ψ̂ŶŶ + Ŵ2 −Ω2

r = Ψ̂ŶŶŶ, (3.9d)

and the influence of the curvature of the toroidal container is entirely contained within
the multiplying factors in the definitions (3.9). The boundary conditions are again
given by expressions equivalent to (3.6c)–(3.6d).

We obtain the usual error-function solution for the axial flow:

Ŵ = 1+ (Ωr − 1)Erf

(
Ŷ

2

)
, (3.10)

and although a corresponding solution for Ψ̂ can be given, we do not do so here as it
is not a compact expression. It is sufficient to note that we can determine Ψ̂Ŷ(Ŷ) and
its contours are plotted as a function of the rotation ratio Ωr and scaled boundary-layer
coordinate Ŷ in figure 2. The quantity Ψ̂Ŷ(Ŷ) determines the meridional flow (in the θ
direction) within the boundary layer for small times because

v = t% sin θΨ̂Ŷ + · · · , (3.11)

for t� 1.
In figure 2 we show that for spin-down (Ωr > 1) the secondary flow in the boundary

layer is uni-directional and directed from the outermost to the innermost radius of
the container. Similarly for Ωr . −0.56 the flow remains uni-directional (again in the
same outer-to-inner direction). For spin-up flows 0 6Ωr 6 1 the flow is unidirectional,
but reversed so that the motion is from the innermost to the outermost radius of the
container. However, there is a range of rotation ratio −0.56 .Ωr < 0 where the initial
response is more complicated, leading to bi-directional flow, with fluid going in both
directions in the boundary layer. These different responses are induced by viscous
acceleration/deceleration of near-wall fluid acting to break the centrifugal–pressure
balance that exists in the initial rigid-body rotation.
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FIGURE 2. The azimuthal velocity in the meridional plane in the small-time limit.
We show contours of Ψ̂Ŷ as a function of Ωr. Contour levels are 1.6, 1.4, . . . , 0 and
−0.02,−0.04, . . . ,−0.12. Ψ̂Ŷ > 0 (for all Ŷ) corresponds to azimuthal flow in the boundary
layer from the outer to inner radius of the container, and vice versa for Ψ̂Ŷ < 0. The azimuthal
flow changes sign at some Ŷ > 0 for −0.56 . Ωr < 0, meaning that the meridional flow is
bi-directional in this region.

3.2. Boundary-layer solutions at the attachment/detachment points, θ = 0,π

As can be seen from the form of (3.6), at the attachment/detachment points of the
meridional flow θ = 0,π, the terms Ψθ and Wθ vanish, allowing us to solve for the
local flow independently of the behaviour at general values of θ . In particular, it is
possible to seek (quasi) steady solutions to the resulting equations:

−WξΨ cos θ =Wξξ , (3.12a)

W2 −Ω2
r + ΨξΨξ cos θ − ΨξξΨ cos θ = Ψξξξ , (3.12b)

subject to

W = 1, Ψ = Ψξ = 0, on ξ = 0, (3.12c)
W→Ωr, Ψξ → 0, as ξ →∞. (3.12d)

For these equations to hold, we must have cos θ = ±1, corresponding to solutions
local to the outermost (θ = 0, r = 1) and innermost (θ = π, r = 1) positions of the
torus respectively.

These solutions are quasi-steady in the sense that the effect of the boundary-layer
transpiration on the (finite) interior core flow is neglected on the time scale of interest;
that is, we assume that spin-up of the core fluid occurs over an asymptotically longer
time scale (Benton & Clark 1974).

The far-field asymptotic form of solutions to (3.12) is sufficient to show that steady
solutions local to θ = 0,π can only exist for Ψ (ξ →∞) cos θ > 0, otherwise one
finds exponential growth for large ξ . Therefore, we only expect quasi-steady solutions
when the flow in the meridional plane is directed towards the boundary, that is, at an
attachment point of the secondary flow.
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FIGURE 3. A measure of the radial mass flux into the boundary layer for the (quasi) steady
equations (3.12) when θ = 0,π. The solid line represents solutions at θ = π, the dashed
lines are solutions at θ = 0. The filled data points correspond to the limiting values of
Ωr = 1, 0,−1; a limiting structure of the boundary-layer system is found in each of these
cases. The vertical lines denote the location of two limit points at Ω (1)

r ≈ −0.495 and
Ω (2)

r ≈ −0.101. Spin-up from rest corresponds to Ωr = 0, as indicated by the open circle, for
which Ψ (ξ →∞)≈−0.833. There are two additional solution branches with two associated
limit points that exist in the region −1.002 < Ωr < −0.997 (not visible on the scale of the
figure). These results are independent of the choice of curvature δ, which is a consequence of
the transformation (3.5).

In figure 3 we characterise the (quasi) steady solutions by showing the far-field
value of the stream function at the two locations θ = 0,π obtained by solving the
system (3.12) using a standard second-order finite-difference scheme. At these two
positions in the flow Ψ (ξ →∞) corresponds (with an appropriate Ek1/2 scaling) to the
transpiration in the meridional plane induced by the boundary-layer solution.

We note that for spin-down Ωr > 1 and spin-up 0 6 Ωr < 1 there is a unique
quasi-steady state. This quasi-steady behaviour is to be found at the outermost point of
the torus for spin down and the innermost point for spin up.

For the cases of ‘spin-over’, i.e. Ωr < 0, there are two solutions for Ω (2)
r < Ωr < 0

and −1 .Ωr <Ω
(1)
r and a region of no (quasi) steady solutions for Ω (1)

r <Ωr <Ω
(2)
r ,

where Ω (1)
r ≈ −0.495 and Ω (2)

r ≈ −0.101. We cannot completely rule out that steady
solutions exist in the region Ω (1)

r <Ωr <Ω
(2)
r as no rigorous proof has been attempted,

but a lengthy search has not revealed any. We find a very small region of parameter
space near to Ωr ≈ −1 for which four solutions can be achieved near the outermost
wall of the torus. These additional states arise through a pair of limit points and occur
over a parameter range that is too small to see in figure 3.

A simple (linear perturbation) temporal eigenvalue analysis shows that all of the
additional (‘higher branch’) states that arise from limit points (as shown in figure 3)
are unstable to perturbations that have the same local boundary-layer structure. We do
not believe that these additional solutions play an important role in the dynamics of
the boundary layer for t = O(1).
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FIGURE 4. The evolution of the boundary-layer thickness ∆, as defined in (3.13b), as a
function of θ (around the inside of the toroidal container) for increasing time in the case of
spin-up from rest (Ωr = 0). The boundary-layer solution suggests that a finite-time singularity
develops in the neighbourhood of θ = 0. The dotted line shows the boundary-layer thickness
of the quasi-steady steady local solution that can be developed in the region of θ = π. The
curvature is taken to be δ = 0.128.

3.3. Numerical solution of the (θ -dependent) unsteady boundary layer
We are now in a position to solve the θ -dependent boundary-layer system (3.8) for
0 6 t 6 1. The solution is obtained by (parabolically) marching in θ starting at
the attachment point (θ = 0 or π). The solution at this starting point is obtained
numerically from the unsteady analogue of the solutions described in § 3.2. The
computation then proceeds on the three-dimensional mesh {θi, yj, tn} for the unknowns
{Ψ n

ij ,Wn
ij}. We satisfy the equations at the central points 1

2(θi + θi+1), 1
2(yj + yj+1),

1
2(tn + tn+1) and the resulting scheme is second order in both space and time. When the
computation of (3.8) reaches t = 1 it is convenient (and simple) to switch back to the
unscaled system (3.6) for t > 1.

As we have discussed in § 3.1 and, in particular, figure 2, if Ψ̄y > 0 for all y and
θ we may (parabolically) march in the direction of increasing θ from θ = 0 to π;
conversely, if Ψ̄y < 0 we march from θ = π to θ = 0. If the boundary-layer flow in the
meridional plane is bi-directional, then we cannot solve the system by this parabolic
marching scheme, which precludes solution over the range −0.56 .Ωr < 0, see § 3.1.

The generic behaviour of the boundary-layer system (in cases for which the
meridional flow is uni-directional) is highlighted in figures 4 and 5. The figures
show a (scaled) measure of the boundary-layer thickness

∆(θ, t)= Ek−1/2

∫ r=1

r=0

Ωr − w(r, θ, t)/(δ−1 + r cos θ)
Ωr − 1

dr (3.13a)

≈ % (θ)−1/4

∫ ∞
0

Ωr −W(ξ, θ, t)

Ωr − 1
dξ, (3.13b)

as a function of the angle θ as time evolves. The approximation in (3.13b) is to
indicate that the leading-order boundary-layer solution is used. We list both definitions
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FIGURE 5. The evolution of the boundary-layer thickness ∆, as defined in (3.13b), as a
function of θ (around the inside of the toroidal container) for increasing time in the case of
spin-down with Ωr = 2. The boundary-layer solution suggests that a finite-time singularity is
realised in the neighbourhood of θ = π. The dotted line shows the boundary-layer thickness
of the quasi-steady steady local solution that can be developed in the region of θ = 0. The
curvature is taken to be δ = 0.128.

because we will later present detailed comparisons with finite-Ekman-number solutions
of the Navier–Stokes equations, for which we use the definition (3.13a) instead. The
factor δ−1 + r cos θ in (3.13a) is a dimensionless measure of the distance from the axis
of rotation that is equivalent to the quantity %(θ) when r = 1.

In the case of spin-up from rest (Ωr = 0), we see in figure 4 that the response
local to the innermost point of the torus wall (θ = π) approaches a quasi-steady state
that is in agreement with the analysis of § 3.2. However, at the outermost point of
the torus wall (θ = 0) the evolution is to what appears to be a singular response with
an unbounded boundary-layer thickness obtained at a critical time (of approximately
1.55). In the case of spin-down (e.g. Ωr = 2), as shown in figure 5, we observe that the
response is reversed, with a quasi-steady solution now being obtained at θ = 0 together
with a singular response at θ = π (at approximately t = 0.7).

3.4. The finite-time singularity
As shown in the previous section, there is strong evidence that the boundary-layer
system evolves to a singularity local to the critical points θ = 0 and θ = π. Which of
these positions realises a singular response is dependent upon the rotation parameter
Ωr. On setting sin θ = 0 the singular response in system (3.6) can be connected to the
asymptotic structure presented by Simpson & Stewartson (1982). We do not reproduce
the asymptotic description of the singular structure here and the interested reader is
directed to their paper for the details; the structure is generic to such stagnation-point
flows and does not have to be altered significantly to apply it to the problem under
consideration here. As the asymptotic behaviour is known as t→ ts (where ts is
the time of the singularity), we can estimate ts from the numerical solution of the
governing system by fitting the data resulting from our computations of the unsteady
boundary layer to the leading-order asymptotic form for ts − t� 1.
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FIGURE 6. The behaviour of the breakdown time ts as a function of Ωr. The solid line
represents a singularity at θ = 0, whilst the dashed line represents a singularity at θ = π. We
note that for Ωr ≈ −0.355 a singularity can be found at both points θ = 0 and π and occurs
at approximately the same time. The curvature is taken to be δ = 0.128; however these results
can be applied to other values of δ by a simple rescaling of ts.

In figure 6 we show the functional dependence of the breakdown time ts on the
rotation ratio Ωr (for a curvature of δ = 0.128). In particular we notice that for spin-up
from rest Ωr = 0 the singularity occurs at θ = 0 at a time of approximately ts ≈ 1.55.
For spin-down Ωr = 2 the breakdown occurs at θ = π at a time of approximately
ts ≈ 0.7.

Based on the evidence of numerical results, we conjecture that a singularity is
found at θ = 0,π whenever a steady solution does not exist for the chosen value of
Ωr. Hence when Ω (1)

r ≈ −0.495 < Ωr < Ω
(2)
r ≈ −0.101, for which there is no steady

solution at θ = 0 or θ = π (see figure 3), a singularity is obtained at both points.
Furthermore, from figure 6 we see that at Ωr ≈ −0.355 the time of breakdown is the
same at both positions and the boundary-layer analysis predicts a simultaneous, double
singularity.

4. Rotationally symmetric Navier–Stokes computations
We now consider direct numerical simulation of the Navier–Stokes equations at

large, but finite, Ekman numbers in order to examine how the predictions arising from
the boundary-layer theory, in particular the finite-time singularities, are realised in the
full field equations.

Once again, we assume rotational symmetry, so that all three velocity components
and the pressure are independent of φ and the equations are solved using an adaptive,
Galerkin finite-element method implemented in the software library oomph-lib, see
Heil & Hazel (2006). The computational domain is the entire meridional cross-section
of the torus. In other words, we do not assume any other additional symmetries in the
system, but, in fact, all solutions remain symmetric about the mid-plane of the torus.
The fluid variables are discretised using stable, isoparametric, Q2P1 (Taylor–Hood)
elements in which the velocities are interpolated quadratically and the pressures
are interpolated linearly within each element. The time derivative terms are treated
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FIGURE 7. The evolution of the boundary-layer thickness ∆(θ, t), as defined in (3.13), at
the positions θ = 0,π/4,π for the case of spin-up from rest (Ωr = 0). The solid lines are
solutions of the boundary-layer system whilst the data points are Navier–Stokes computations
with Ek = 1/1000 (square), 1/2000 (cross) and 1/4000 (circle). The curvature is taken to be
δ = 0.128.

implicitly using a second-order BDF2 method and the resulting discrete nonlinear
system is solved by Newton–Raphson iteration; each linear system is solved iteratively
by GMRES, using the LSC preconditioner described by Elman, Silvester & Wathen
(2005).

The approximate error in each element is calculated using an estimate based on
the recovery of velocity gradients (Zienkiewicz & Zhu 1992a,b). Elements in which
the local estimated error is greater than 0.01 % of the total estimated error across the
entire domain are refined (into four new elements) and those for which it is less than
0.0001 % are unrefined. This approach seeks to equipartition the error between the
elements; and the total number of degrees of freedom can be adjusted by altering these
tolerances or specifying a maximum level of refinement. Continuity of the solution
is enforced by constraining the values at any hanging nodes, see Demkowicz et al.
(1989). The typical time step used is dt = 0.005 (although a smaller value was used
for convergence testing) and one spatial refinement was performed after each time step
past the first. Typically the computation had approximately 3× 105 degrees of freedom.

The Navier–Stokes computations begin at t = ε with an initial condition given by
the leading-order boundary-layer solution in the limit of small time, as presented in
§ 3.1. Typically, we choose ε = 0.05; and the results that we present herein have
been verified to be independent of the choice of ε � 1. In both the Navier–Stokes
and boundary-layer systems, varying the torus rotation rate gradually (rather than
impulsively) does not alter the qualitative nature of the results, provided that the time
scale of the transition in rotation rate is rapid relative to the time taken for the bulk
of the fluid to spin up. Although in experiments the change in rotation rate must
necessarily be gradual, we concentrate on the impulsive transition here because it
avoids the introduction of any additional parameters into the problem.

We use the same measure of boundary-layer thickness ∆(θ, t), defined in (3.13a),
as a metric for the unsteady evolution of the flow; and present results for the
time evolution of ∆ at representative values of θ in the case of spin-up from
rest (Ωr = 0) in figure 7. We find excellent quantitative agreement between the
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boundary-layer predictions and the Navier–Stokes computations. In particular, the
quasi-steady boundary-layer solution local to θ = π agrees well with the data for
three different values of the Ekman number, Ek = 1/1000, 1/2000 and 1/4000. More
generally, the finite-Ekman-number data collapse well under the boundary-layer scaling
implicit in ∆, apart from near the breakdown event at θ = 0.

At θ = 0 (the outermost point of the torus), the sudden breakdown of the boundary
layer is indeed realised at finite Ekman numbers, manifesting as a rapidly increasing
boundary-layer thickness. The effect of the finite Ekman number is to delay the
breakdown event somewhat because the radial pressure gradients that have been
neglected in the boundary-layer system become reintroduced into the leading-order
dynamics of the flow. Nonetheless, progressively decreasing the Ekman number leads
to an increasingly rapid growth of the boundary-layer thickness corresponding to a
dramatic eruption event.

Figure 8 plots the corresponding contours of axial frequency w(r, θ, t)/(δ−1+r cos θ)
for Ek = 1/2000, showing the eruptive nature of the boundary layer at the outer wall
of the pipe (θ = 0). At t = 1.6 the boundary layer at θ = 0 is approximately four
times the thickness of that at θ = π, and is rapidly increasing. By t = 2.2 a significant
quantity of more rapidly rotating fluid has been ejected into the static core near θ = 0
and the width of the region is no longer thin compared to the pipe radius.

To examine further the predictions of the boundary-layer theory we consider a case
of ‘spin-over’, with Ωr < 0. As highlighted in § 3.4, in this parameter regime we can
find finite-time singularities at both θ = 0 and θ = π, but the singularities do not, in
general, occur at the same time. However, for the critical value Ωr = −0.355 (see
figure 6) the boundary-layer singularities are predicted to occur simultaneously, leading
to ejection into the core at both the inner and outer walls of the torus. In figure 9 we
present the evolution of the boundary-layer thickness for this case, showing that, whilst
the evolution at the intermediate point θ = π/2 is benign, the boundary-layer thickness
at the equatorial points of the torus θ = 0,π grows rapidly at the predicted time. Once
again, as expected, the finite nature of the Ekman number eventually acts to mitigate
the rate of growth of the boundary layer but does not inhibit it until the boundary layer
is no longer thin compared to the pipe radius. No boundary-layer prediction is made
at the θ = π/2 position owing to the bi-directional nature of the flow in the meridional
plane making parabolic marching of (3.6) inappropriate. However, solutions local to
the attachment/detachment points θ = 0,π are still easily found from the unsteady
analogue of (3.12) and are presented as the solid lines.

Figure 10 shows the same Ωr = −0.355 case, for Ek = 1/2000, as contours of
constant axial frequency w/(δ−1 + r cos θ) at t = 3, 4.5. The simultaneous eruption at
both θ = 0 and θ = π is visible, although the post-breakdown structure of the local
flow is significantly different at each point; presumably a consequence of the different
local structure of the collisional ‘jets’ and the interior pressure gradient.

Finally, in figure 11, we show the evolution of the axial frequency profile along the
lines θ = 0,π when Ωr =−0.355. Results from the boundary-layer and Navier–Stokes
(Ek = 1/1000) simulations corresponding to the same values of ∆ (the measure of
the boundary-layer thickness) are presented for varying r, where r = 1 is the torus
wall. Figure 11(a) shows the profile at the innermost (θ = π) point of the torus,
whilst figure 11(b) shows the evolution at the outermost (θ = 0) point. Although
the effects of the finite Ekman number (obviously) mitigate the singular eruption, a
crucial feature of the profiles that arises in the boundary-layer description remains
in the Navier–Stokes results, namely the introduction of inflectional profiles in the
axial flow. These inflection points in the neighbourhood of the breakdown event are a
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FIGURE 8. Contours of the axial frequency w(r, θ, t)/(δ−1 + r cos θ) in the meridional cross-
section for t = 1.6, 1.8, 2, 2.2 with δ = 0.128, Ek = 1/2000 and Ωr = 0 (spin-up from rest).
The axis of rotation is to the left of each cross-section and the eruption at the outer bend
(θ = 0) is clearly seen; elsewhere in the torus the boundary layer remains quasi-steady over
this time scale. Sixteen contours are shown, at values equally spaced between 0.05 and 1.

generic feature for all Ωr and play an important role in the response of the flow to
non-axisymmetric wave-like instabilities studied in the next section.

5. Non-axisymmetric instability of the unsteady axisymmetric base flow
In this section, we first present an asymptotic description of the linear instability

of the boundary layer that we believe captures the dominant physical mechanism (the
inflectional profiles near breakdown). We then compare these results to the (limited)
available experimental data and a (more extensive) sequence of Navier–Stokes
simulations.

The experimental investigations of MM and del Pino et al. (2008) have presented
evidence of an instability that breaks the rotational symmetry of the flow around the
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FIGURE 9. The evolution of the boundary-layer thickness ∆(θ, t), as defined in (3.13), at
the positions θ = 0,π/2,π for a case of spin-over with Ωr = −0.355. The solid lines are
solutions of the boundary-layer system at θ = π (lower solid line) and θ = 0 (upper solid line)
whilst the data points are Navier–Stokes computations with Ek = 1/1000 (cross), 1/2000
(circle). The curvature is taken to be δ = 0.128.
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FIGURE 10. Contours of the axial frequency w(r, θ, t)/(δ−1+r cos θ) in the meridional cross-
section for t = 3, 4.5 with δ = 0.128, Ek = 1/2000 and Ωr = −0.355. The axis of rotation is
to the left of each cross-section and the simultaneous eruption at both θ = 0,π is clearly seen.
Twelve equally spaced contours are used between 1 and −0.35.

torus. The instability occurs within a few rotations of the container, typically at times
comparable to those at which the boundary layer is predicted to erupt. Experimental
photographs using a light sheet across the equatorial plane of the torus indicate that
the instability is wave-like around the torus, see figure 19 of MM, and the wavelength
is short. The wave is first observed in the vicinity of the boundary-layer eruption,
becomes visible suddenly and usually grows until the flow becomes turbulent.
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FIGURE 11. The evolution of the axial frequency during eruption of the boundary layer
for a case of spin-over with Ωr = −0.355. The lines show the profiles obtained from a
Navier–Stokes computation at Ek = 1/1000 for θ = π (a) and θ = 0 (b); the torus wall is at
r = 1. The data points show the corresponding boundary-layer results when mapped to the
r–θ domain at the chosen value of Ek = 1/1000. The curvature is taken to be δ = 0.128.

5.1. An asymptotic description of linear, non-axisymmetric, instability waves

The short wavelength and extremely rapid development of the instability suggests
that, for Ek � 1, it may be possible to describe the mechanism in the context of
inviscid perturbation equations. We therefore seek a linear wave-like perturbation of
the unsteady boundary-layer flow in the form

u= Ek1/2u0(η, θ, t)+ εũ(η)E + · · · , (5.1a)

v = v0(η, θ, t)+ εṽ(η)E + · · · , (5.1b)

w= w0(η, θ, t)+ εw̃(η)E + · · · , (5.1c)

p= p0(θ)+ Ek1/2p1(η, θ, t)+ εp̃(η)E + · · · , (5.1d)



Unsteady flow in a rotating torus 105

where η = (1 − r)Ek−1/2 as before and ε � 1 is a perturbation amplitude. The short-
scale (comparable to the boundary-layer thickness) wave-like component is such that

E = exp {i(αX + βZ − ωτ)} , (5.1e)

where X = Ek−1/2%φ, Z = Ek−1/2θ , τ = Ek−1/2t and it is to be understood that the real
part of the perturbation is taken.

Substitution of (5.1) into the governing equations given in the Appendix leads to
Rayleigh’s equation at leading order:

(ŨB − c̃)(D̃2 − k̃2) ũ(η)− ũ(η) D̃2ŨB = 0, (5.2a)

k̃2 = α2 + β2, (5.2b)

where D̃≡ d/dη, c̃= ω/k̃ and ŨB is the base flow velocity resolved in the direction of
the phase velocity of the wave:

ŨB(η; θ, t)= αw0 + βv0

k̃
. (5.2c)

The neglected terms in (5.2) are of O(Ek1/2), which is simply O((ν/Ωf )
1/2 a−1) a

measure of the boundary-layer thickness relative to the radius of the pipe. At these
scales, the base flow is effectively steady. However this is only self-consistent in the
limit Ek � 1, when waves of wavelength comparable to the boundary-layer thickness
grow on a time scale much shorter than the time for one revolution of the torus.

For consistency with the earlier boundary-layer analysis (3.6), we rescale the
boundary-layer coordinate ξ = %1/4η, and (5.2) becomes

(UB − c)(D2 − k2) û(ξ)− û(ξ)D2UB = 0, (5.3a)

k2 = 1
%1/2

(α2 + β2), (5.3b)

where ũ(η)= û(ξ), D≡ d/dξ , c= c̃/% and

UB(ξ ; θ, t)= αW + β%−1/2 sin θΨξ
(α2 + β2)

1/2 , (5.3c)

where W and Ψ are defined in (3.5).
The experimental results suggest that an instability wave first occurs at a ‘front’ that

develops near θ = 0 when Ωr = 0 (spin-up from rest). For θ = 0 the base flow has no
component in the θ direction, which motivates examination of the case β = 0 rather
than the more general spiral modes (β 6= 0); the extension of the analysis in the latter
case is straightforward.

As with all such Rayleigh analyses, the development of inflectional profiles is a
key feature. In figure 12 we show the location of inflection points ξc (points at which
Wξξ (ξc, θ, t) = 0) in the axial base flow as the boundary-layer solution evolves with
time in the two cases: Ωr = 0, θ = 0 (spin-up) and Ωr = 2, θ = π (spin-down). In both
cases, inflectional profiles develop prior to the boundary-layer eruption, as noted in § 4,
and the singular thickening of the boundary layer means that ξc→∞ as t→ ts.

For fixed values of t beyond the point at which inflection points develop, we solve
the Rayleigh problem (5.3) in a standard manner, employing a QZ algorithm and
local refinement following discretisation using a second-order finite-difference scheme.
When β = 0, we find a band of unstable axial wavenumbers k. In the spin-up case
(Ωr = 0), the base flow is chosen local to the eruption point at θ = 0, whereas for
spin-down (Ωr = 2), the analysis is performed at θ = π. Figure 13(a) presents the
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FIGURE 12. The development of inflectional axial flow profiles at the outer bend during spin-
up (a), and the inner bend during spin-down (b). Here ξc is the boundary-layer coordinate
at which Wξξ = 0. The curvature is taken to be δ = 0.128. In both figures the abscissa
extends to the time of the singularity, which is at t ≈ 1.55 in (a) and t ≈ 0.7 in (b):
(a) θ = 0;Ωr = 0; (b) θ = π;Ωr = 2.
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FIGURE 13. (a) The scaled growth rate, kci as a function of the wavenumber k, for the
inviscid instability with β = 0. (b) The corresponding phase speed cr as a function of
wavenumber k for the data set. In both (a) and (b), two cases are shown: Ωr = 0, θ = 0,
t = 1.35, 1.4, 1.5 (solid lines) and Ωr = 2, θ = π, t = 0.64, 0.66, 0.68 (dashed lines).

scaled temporal growth rate kci (where c = cr + ici) as a function of the wavenumber
k for Ωr = 0, 2 at three different values of t for which the inflection points have
developed in the local base flow. In all cases, the maximum growth rate lies in the
range k ≈ 0.1 to k ≈ 0.12 and the corresponding dimensional growth rate of the wave
is %5/4Ek−1/2kciΩ

−1
f . Figure 13(b) presents the corresponding phase speed cr.

5.2. Experimental work of Madden & Mullin (1994)
In the experiments of MM, the Reynolds number corresponding to their figure 19
was C = 7540 (in their notation) and the curvature parameter was δ = 0.128. The
corresponding Ekman number is Ek = (δC)−1 ≈ 10−3 and at the outer wall (θ = 0),
% = δ−1 + cos θ = 8.8125. For the fastest growing linear mode, in the Ek � 1 limit
when Ωr = 0, the predicted number of waves around the torus is n = k%5/4Ek−1/2,
where k ≈ 0.1–0.11 (a weakly varying function of the slower time scale over which
the base flow varies). Thus, the inviscid local analysis leads to an axial (around
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the torus) wavenumber of n ≈ 50 for the fastest growing mode (taking k ≈ 0.105).
Extrapolation of the section of torus shown in figure 19 of MM leads to the
estimate that n≈ 60 in the experimental work. This inflectional mechanism is therefore
certainly a plausible explanation for the waves observed in the work of MM, but
we can make a more detailed comparison by extending our numerical Navier–Stokes
solutions to allow for linearised non-axisymmetric modes.

5.3. Non-axisymmetric stability determined from Navier–Stokes computations

The asymptotic analysis that we have presented thus far is entirely local to the
breakdown position (that is, at the inner or outer bend of the pipe/torus) and is
only valid in the low-Ekman-number limit.

At finite values of the Ekman number, the separation of time scales between the
instability growth and the base flow development cannot be justified. In such a regime
we must consider the growth of any instability in parallel with the base flow evolution.

We assume that the response of the flow is decomposed in the form

u(r, θ, t)= u0(r, θ, t)+ εû(r, θ, t)einφ, (5.4a)
p(r, θ, t)= p0(r, θ, t)+ εp̂(r, θ, t)einφ, (5.4b)

where ε � 1, n is a wavenumber, û = (û, v̂, ŵ) is the (complex) disturbance velocity
field and p̂ is the (complex) disturbance pressure field. The formulation and solution of
the base flow u0, p0 is as described in § 4, whilst the resulting linearised system for the
(complex) quantities û, p̂ can be time marched in an analogous manner for any chosen
value of n. The computational domain for the disturbance remains the meridional
cross-section of the pipe, but a separate finite-element mesh is used to discretise the
linearised system of equations. Any quantities required from the base flow are obtained
via its finite-element representation and the appropriate correspondence schemes are
determined automatically by standard functions within oomph-lib. The use of a
separate mesh allows for different patterns of spatial adaptivity in the base flow and
disturbance, reflecting the different spatial scales within the two flows. The disturbance
flow is discretised using the complex analogue of Q2P1 elements, in which the real
and imaginary parts of the disturbance fluid velocities are interpolated quadratically
and the real and imaginary parts of the disturbance pressures are interpolated linearly.
The time-derivative terms in the perturbation equations are again treated implicitly
using a second-order BDF2 method and the resulting discrete linear system is solved
iteratively using GMRES and a diagonally perturbed ILU preconditioner provided
by the Trilinos project, see Heroux et al. (2005). The approximate error in each
element is calculated using an estimate based on the recovery of both the real and
imaginary parts of the velocity gradients and adaptive refinement is employed as
described for the base flow. In general, the maximum number of degrees of freedom
in the combined problem was of the order of 5 × 105 and typical time steps were
dt = 0.0025; these smaller time steps are required to capture the oscillatory (axially
propagating) nature of the perturbation field.

To determine the stability of this unsteady flow to the non-axisymmetric mode of
wavenumber n we first consider a global kinetic energy measure for the perturbation

Ē =
∫ r=1

r=0

∫ θ=2π

θ=0
û · û r dθ dr, (5.5)
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FIGURE 14. (a) The temporal growth rate for non-axisymmetric linear perturbations at
Ωr = 0 and Ek = 1/1000, 1/2000, 1/4000 for around-torus wavenumbers of n = 50, 71 and
100 respectively (in the direction of the arrow shown). These wavenumbers are determined
from the asymptotic prediction of the fastest growing mode: n= k%5/4Ek−1/2 where k ≈ 0.105,
% = 1/δ + 1 and δ = 0.128. (b) The Ek = 1/2000 case is shown again, together with the
two-dimensional frozen-time eigenvalue analysis, shown as the data points. The vertical lines
indicate the first appearance of an inflection point in the axial flow in the boundary-layer
theory (t ≈ 1.28) and in the finite-Ek calculation (t ≈ 1.3).

and then define a growth rate by considering the relative growth,

σ̄ (t)= 1
2

Ēt

Ē
. (5.6)

Hence σ̄ (t) > 0 corresponds to energy growth of the disturbance, and this definition
is also consistent with a modal (linearised) eigenvalue analysis if the base flow is
assumed to be steady.

Our aim here is to demonstrate that the local, small-Ekman-number, inviscid
asymptotic description of the instability does play a role when applied at small (but
finite) Ekman numbers in the two-dimensional cross-section of the finite-radius pipe.
In this context we choose to investigate a simplistic ad-hoc initiation mechanism for
the non-axisymmetric mode, by imposing boundary conditions of

û(r = 1, θ, t)= 0, v̂(r = 1, θ, t)= 0, (5.7a)
ŵ(r = 1, θ, t)= %θexp[−a1θ

2]exp[−a2 (t − tk)
2], (5.7b)

where a1 = 100, a2 = 250 and tk = 0.25. The boundary condition for ŵ is chosen
to be spatially localised near the outer bend of the torus to reduce the number of
degrees of freedom in the discretised linear perturbation equations, whilst the transient
behaviour in time ensures that the linearised system is unforced beyond t ≈ 0.5. We
have confirmed that the exact nature of the transient perturbation does not influence
the qualitative aspects of the results we present below but does lead to instability at
slightly different values of t at finite values of Ek .

In figure 14(a) we show the growth rate σ̄ (t) for Ωr = 0 with Ek = 1/1000, 1/2000,
1/4000 and correspondingly increasing wavenumbers n = 50, 71 and 100 respectively.
These choices of n are based on the predictions of the previous asymptotic theory,
which suggests an around-torus wavenumber n = k%5/4Ek−1/2, where k ≈ 0.105.
The linearised inviscid analysis coupled with the unsteady boundary-layer evolution
predicts that instability occurs at the first appearance of an inflection point in the axial
flow at θ = 0, which is at t ≈ 1.3 (as shown in figure 12). As previously discussed,
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at finite Ekman numbers the development of inflectional profiles is delayed and the
results presented in figure 14(a) confirm that the instability develops when t > 1.3, but
that the time at which the instability occurs decreases with the Ekman number.

Instead of time marching the perturbation equations we can also determine the
growth rate of the most unstable non-axisymmetric eigenmode directly from the
linearised perturbation equations by solving a two-dimensional eigenproblem for the
growth rate λ, under the assumption that the temporal dependence of all perturbation
quantities is eλt . Such a ‘frozen-time’ analysis is non-rigorous except in the limit of
Ek → 0 and provides a temporal growth rate parameterized by time t. Figure 14(b)
shows the same unsteady data from figure 14(a) in the case of Ωr = 0, Ek = 1/2000,
n = 71, but together with the growth rate predicted by the frozen-time analysis. Both
the unsteady marching and the frozen-time analysis present consistent pictures of the
temporal growth of the non-axisymmetric instability, although the frozen-time analysis
predicts instability at a slightly earlier time.

The absolute value of the perturbation’s axial flow component, | ŵ(r, θ, t) |, as
obtained from the time marching process, is shown in figure 15 for the same case of
Ek = 1/2000, Ωr = 0, n = 71. These views of the disturbance field are presented at
the same times as the corresponding base flows shown in figure 8. In figure 16 we
show the same data, but for a cross-section taken across the mid-plane of the pipe,
with the (linear) disturbance field’s axial component normalized to have a maximum
value of unity. Figure 16(a) shows the inflection point as it propagates inwards during
the eruption process at the outer bend, whilst the inner region is entirely benign and
quasi-steady. Consistent with the local Ek � 1 analysis, we see from figure 16(b) that
the unsteady disturbance is concentrated near the outer inflection point of the base flow
profile. We conclude that the experimentally observed instability is, indeed, inviscid in
origin.

6. Centrifugal axisymmetric instability
In addition to the inviscid, non-axisymmetric instability described above, the system

is also susceptible to an axisymmetric centrifugal instability when t� 1. The boundary
layer is developing in time, which means that the problem shares many features with
the Görtler vortex problem, as reviewed by Hall (1990).

As described in § 3.1, the initial response of the flow to a change in the rotation rate
of the torus is a velocity field of the form

u=
(
Ek1/2 t3/2 UB(Ŷ, θ), t VB(Ŷ, θ),WB(Ŷ, θ)

)
+ · · · , (6.1)

in a Rayleigh layer defined by r = 1− ŶEk1/2t1/2 adjacent to the toroidal wall. In terms
of the previous solution given above as (3.9):

WB(Ŷ, θ)= %(θ) Ŵ(Ŷ), (6.2)

VB(Ŷ, θ)= %(θ) sin θ Ψ̂Ŷ(Ŷ), (6.3)

where, as defined earlier, %(θ)= δ−1 + cos θ . The radial velocity component, UB, is not
given explicitly because it plays no role in the perturbation equations (6.9).

For a balance that is able to support a centrifugal instability mode (at O(1) values
of the curvature parameter δ), with a perturbation velocity field (up, vp,wp), we
require ∂θ ∼ ∂r to conserve mass, ∂t ∼ Ek∂r∂r to maintain viscous diffusion across
the boundary layer, and ∂tup ∼ wpWB and ∂twp ∼ up∂rWB to maintain the centrifugal
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2.0 2.2

FIGURE 15. Contours of the absolute value of the axial flow component, |ŵ(r, θ, t)|,
of the wave-like (non-axisymmetric) perturbation; see (5.4). These cross-sections are for
Ek = 1/2000, Ωr = 0, δ = 0.128, n = 71 and t = 1.6, 1.8, 2 and 2.2. The axial component of
the base flow is as shown in figure 8. Ten contours (equally spaced) are shown in each cross-
section; the ranges are [0.005, 0.0514], [0.005, 0.0416], [0.02, 0.0711] and [0.02, 0.233] as t
increases.

forcing. Such a balance is seen to be achieved over a short time/space scale defined by

T = Ek−1/3 t, (6.4)
Y = (1− r)Ek−2/3, (6.5)
Θ = θEk−2/3, (6.6)

with up, vp ∼ wp Ek
1/3. These time/length scales have also been obtained for the one-

dimensional flow induced in the Rayleigh layer on an impulsively rotated infinite
cylinder by Otto (1993) and Mackerrell, Blennerhassett & Bassom (2002). We seek a
multi-scale solution in which the base flow varies around the torus on the slow scale θ
but the perturbation depends on the fast scale Θ . The velocity field for the base flow
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FIGURE 16. Cross-sections across the mid-plane (θ = 0,π) of (a) the base-flow axial
frequency (as seen in figure 8) and (b) the magnitude of the (complex) perturbation
axial component (as seen in figure 15). These data are presented for the same parameters
(Ek = 1/2000, Ωr = 0, δ = 0.128, n= 71) and for t = 1.8, 2, 2.2, which are shown as dashed,
dotted and solid lines respectively in (b). The vertical lines in (a) indicate the outermost
inflection point in the base axial flow and the perturbation has been normalized such that the
peak value is unity.

plus perturbation is therefore of the form

u=
(
Ek T3/2 UB(Ŷ, θ),Ek

1/3 T VB(Ŷ, θ),WB(Ŷ, θ)
)

+ ε (Ek1/3ũ(Y,Θ,T),Ek1/3ṽ(Y,Θ,T), w̃(Y,Θ,T)
)+ · · · (6.7)

with a pressure perturbation of the form p̃(Y,Θ,T)Ek2/3, required to maintain the
pressure gradient in the linearised perturbation equations. In (6.7) ε is a measure of the
Taylor–Görtler perturbation and we assume that it is sufficiently small to yield a purely
linear problem.

For a Fourier mode with wavenumber K over the short scale Θ we decompose the
perturbation as

(ũ(Y,Θ,T), ṽ(Y,Θ,T), w̃(Y,Θ,T))= (û(Y,T), v̂(Y,T), ŵ(Y,T)
)

eiKΘ + c.c.(6.8)

Clearly, the linear perturbation is also implicitly a function of the slow scale variable θ
(via the base flow variation), but we will ignore this dependence and perform a purely
local analysis under the assumption that Ek � 1. The unsteady evolution equations for
the perturbation Fourier mode are:

D2û= ĝ, (6.9a)(
D2 − ∂

∂T

)
ĝ= 2K2 cos θ

%(θ)
WBŵ+ 2iK

sin θ
%(θ)

∂

∂Y
(WBŵ)+ TiK

(
VBD

2û− ∂
2VB

∂Y2
û

)
,

(6.9b)(
D2 − ∂

∂T

)
ŵ=−∂WB

∂Y
û+ TiKVBŵ, (6.9c)
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where the differential operator D is defined by

D2 ≡ ∂2

∂Y2
− K2, (6.9d)

and the base flow velocities are on the Rayleigh scale Ŷ = YT−1/2.
As is typical, see Denier, Hall & Seddougui (1991) and Otto (1993) for example,

we consider the receptivity of these centrifugal modes to a wall-roughness forcing
mechanism. However, it should be noted that other mechanisms can exist in any
experimental configuration; for example, if the initial state is rigid-body rotation, it
may be arrived at by the slow decay of transient turbulent flow or inertial waves in
the core. For a Fourier component of the wall roughness defined by the boundary
r = 1 − εEk2/3eiKΘ + c.c the boundary conditions for the perturbation follow from
linearisation of the no-slip condition onto the unperturbed boundary

û= 0, ûY =−TiK
∂VB

∂Y
, ŵ=−∂WB

∂Y
, on Y = 0, (6.10a)

and

û= ûY = ŵ= 0, as Y→∞. (6.10b)

As the base flow is developing on the thickening Rayleigh-scale coordinate Ŷ it is
sensible to use the same coordinate in the perturbation equations. Similarly we build in
the small-T asymptotic structure of the perturbation by defining

û(Y,T)= ū(Ŷ,T) T, ĝ(Y,T)= ḡ(Ŷ,T), ŵ(Y,T)= w̄(Ŷ,T) T−1/2, (6.11)

where these scalings are determined by the wall-roughness forcing. After substitution
of (6.11) into (6.9) we solve the resulting system for the quantities ū, ḡ and w̄ as a
function of the rescaled time T by a standard second-order finite-difference scheme. It
is known from, for example, Hall (1985) and Zurigat & Malik (1995) that crossflow
acts to inhibit Taylor–Görtler vortices, so we concentrate on the two regions θ = 0,π
at which the crossflow velocity VB vanishes.

At any given time we determine the leading-order contribution to the kinetic energy
of the perturbation:

E =
∫ ∞

Y=0
|ŵ |2 dY = T−1/2

∫ ∞
Ŷ=0
|w̄ |2 dŶ, (6.12)

and then the growth rate of the instability in the developing flow is defined to be
σ(T)= ET/E.

In figure 17 we show (as data points) the functional dependence of Tn on
the perturbation wavenumber K where Tn is defined to be the time of neutral
growth with σ(Tn) = 0. Over this small time scale (the dimensional time being
T Ek1/3Ω−1

f ) the base flow is essentially, to leading order, a thickening Rayleigh
layer. This T1/2 thickening of the base-flow boundary layer will ultimately lead to
the stabilisation of the instability to any O(Ek2/3) wavelengths. However, on a time
scale of T = O(Ek−1/3) the thickening of the Rayleigh layer saturates and becomes a
quasi-steady three-dimensional boundary layer with thickness O(Ek1/2). For this later
problem it may still be possible to obtain a centrifugal instability by seeking larger
wavelength perturbations. We have not investigated this additional problem as it seems
likely that the modes we discuss here will become unstable to secondary instabilities
before any such (later) regime is reached.
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FIGURE 17. The neutral curves for Ωr = 0 (spin-up from rest) and Ωr = 2 (spin-down). For
Ωr = 0, instability is obtained at the innermost point of the torus (θ = π) whilst the outermost
point remains stable. For Ωr = 2, instability is obtained at the outermost point of the torus
(θ = 0) whilst the innermost point remains stable. The data points show the time of neutral
growth where σ(T) = 0, whilst the solid lines indicate where the frozen-time eigenvalue
analysis predicts instability. The curvature is taken to be δ = 0.128.

In figure 17 we also show the results of a frozen-time eigenvalue analysis applied to
(6.9) for which, rather than solving the initial-value problem, we fix the base flow and
obtain an eigenvalue set parameterized by T and K. Clearly such an approach is not
valid in general, as the time scale over which the base flow develops is the same as
the time scale over which the instability grows. However, as is well known, the results
of these two approaches agree for the upper-branch modes, for which K ∼ T−1/8, as
described by Mackerrell et al. (2002).

As may be anticipated, it is the innermost point of the toroidal container (θ = π)
that becomes unstable when the rotation rate is increased (0 6Ωr < 1), whilst for spin-
down Ωr > 1 these modes develop at the outermost point (θ = 0). As a consequence,
the centrifugal instability is only active (over this small time scale) at the point in the
flow that does not (at a later time) develop a finite-time breakdown when Ωr > 0.

For the more complicated case of spin-over, the instability can occur at both θ = 0
and θ = π, as is shown in figure 18. It is seen that the instability develops first in the
neighbourhood of θ = π and then later at θ = 0. Therefore, it is possible that the early
development of a centrifugal instability driven by a receptivity mechanism could occur
before the boundary layer breaks down with a singular structure.

Figure 19 shows the growth rates determined from solving (6.9) as an initial-value
problem for the three cases of Ωr = 2, 0,−0.355, each with a fixed wavenumber of
K = 0.5. It is clearly seen that the growth rate in the case Ωr = 2 is significantly
larger (and occurs earlier) than in the other cases and provides the most likely case
for investigation in Navier–Stokes computations. Therefore, in the results that follow
below, we will restrict attention to Ωr = 2.

6.1. Navier–Stokes simulations with an isolated wall perturbation
We can demonstrate the existence of this instability in the Navier–Stokes
computations by considering a perturbed problem with a wall location defined
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FIGURE 18. The neutral curves for a spin-over case with Ωr = −0.355. In this case
centrifugal instability can be found at both the innermost (θ = π) and outermost (θ = 0)
positions of the torus. The data points are the positions where σ(T) = 0 whilst the solid lines
indicate where the frozen-time eigenvalue analysis predicts instability. The curvature is taken
to be δ = 0.128.
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FIGURE 19. The growth rate σ as a function of the rescaled time T in the three cases
Ω = 2, 0,−0.355 for a Fourier mode with K = 0.5. The curvature is taken to be δ = 0.128.

by rwall = 1 − ε AEk2/3 f (θ/Ek2/3); that is, rather than solving the system in a circular
domain we introduce a small scale perturbation of size O(εEk2/3) localised about
θ = 0. We consider a specific case of Ek = 1/2000, ε = 1/10 and f (Θ)= exp(−Θ2/4).
These values lead to a perturbation to the boundary of the computational domain of
a height that is of dimensionless amplitude 6.3 × 10−4 A (relative to the radius of the
torus). We then perform two computations, one with the boundary perturbation (A= 1)
and one without (A = 0). In each case we can compute the shear at the wall in the
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FIGURE 20. Axisymmetric unsteady Navier–Stokes computations, showing the contours of
the shear stress τ(θ, t) = ∂w/∂r evaluated at the wall of the torus, near θ = 0, in the case
Ω = 2, δ = 0.128 and Ek = 1/2000. (a) The initial evolution of a scaled perturbation
1τEk2/3 induced by an imperfection added to the wall position of dimensionless amplitude
6.3 × 10−4 (see the text for details). The contours are shown on the time/space scales
associated with a centrifugal instability, where θ = Θ Ek2/3 and t = T Ek1/3. (b) The
evolution of τ t1/2 in the unscaled coordinates, demonstrating the nonlinear development of
the perturbation over a somewhat longer time scale. Note that the results of figure 17 predict
growth of linear perturbations at T ≈ 1. The curvature is taken to be δ = 0.128.

vicinity of the perturbation:

τ(θ, t)= ∂w

∂r

∣∣∣∣
r=rwall

. (6.13)

In figure 20(a) we show the difference in these two data sets (1τ = τ |A=1− τ |A=0) as a
function of Θ and T , including the predicted Ek2/3 scaling for the contribution of the
instability to the wall shear. We note that this same computation but at Ek = 1/1000
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displayed very little difference from the case shown, suggesting that the scalings
of this section capture the growth mechanism accurately. In figure 20(b) we show
contours of the quantity τ t1/2 for the A = 1 case, showing the nonlinear evolution of
the Taylor–Görtler vortex in the unscaled θ and t variables.

Figure 20(a) shows initial decay of the perturbation induced by the O(εEk2/3) wall
imperfection followed by subsequent growth around T ≈ 1 in line with the boundary-
layer predictions of figure 17. Such behaviour is entirely typical of these flows and
can be found in, for example, Denier et al. (1991). The difference here is that we
are extracting the behaviour from a data set obtained via the nonlinear Navier–Stokes
equations, rather than reconstructing Fourier components of the linearised perturbation
equations on top of the boundary-layer system. This makes the nonlinear continuation
to larger times a simple process, for which figure 20(b) demonstrates that the
instability has grown to significantly affect the base flow at t ≈ 0.5 when Ek = 1/2000.
The finite-time singularity of the boundary-layer system is at t ≈ 0.7 (albeit at θ = π,
rather than the θ = 0 location considered here). Therefore, at values of the Ekman
number typical of laboratory experiments (e.g. O(10−3) as used by MM and del Pino
et al. 2008) the nonlinear development of a centrifugal instability typically still occurs
on the same time scale as the boundary-layer eruption. Only at much lower values of
Ek would we expect to see significant scale separation between the centrifugal modes
which begin to grow when t = O(Ek1/3) and the breakdown which occurs for t = O(1).
Nevertheless, because the centrifugal instability occurs at θ = 0 and the finite-time
singularity occurs at θ = π (in the case of Ωr = 2, and vice versa if 0 6 Ωr < 1)
the two events remain largely isolated until the core flow is altered post breakdown.
However, the possibility exists for the two mechanisms to interact in the spin-over
(Ωr < 0) regime, but we do not pursue this here.

7. Conclusions
This work is motivated by the experimental investigation of Madden & Mullin

(1994), which considered the transient evolution of the flow in a toroidal container
during a rapid increase in rotation rate, from rest to a constant final value. Their
results demonstrated that for sufficiently small Reynolds numbers (based on the
final rotation frequency) the spin-up response is diffusive whilst at intermediate
values the spin-up process is aided by an increasingly strong secondary recirculation.
However, for large Reynolds numbers the response is much more complicated with
the development of a ‘front’ that propagates radially inwards from the outermost bend
of the container. This front is initially axisymmetric, but rapidly develops a wave-like
structure in the around-torus direction, which in turn leads to a transient, disordered,
three-dimensional flow.

We believe that we have described the dominant mechanisms in the Madden
& Mullin (1994) experimental configuration through a detailed description of the
rotationally symmetric base flow combined with an analysis of its linear stability
properties. Furthermore we have extended the analysis to apply to a full range of
flows that can be parameterised by the ratio of initial-to-final rotation frequencies,
Ωr. Our boundary-layer analysis is combined with large-scale numerical solutions
(at finite Reynolds number) of the nonlinear rotationally symmetric flow coupled
with the linearised unsteady non-axisymmetric flow field for a Fourier mode in
the around-torus direction. We have presented evidence that a collisional boundary
layer is indeed the underlying mechanism of the ‘front’ observed in the experiments,
with good agreement being demonstrated between the small-Ekman-number (large-
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Reynolds-number) asymptotics and finite-, but small-, Ekman-number computations of
the full flow field.

A crucial observation is that the boundary-layer collision and subsequent eruption
leads to axial velocity profiles that are inflectional and we demonstrate that a non-
axisymmetric, inviscid instability does occur in the boundary-layer equations. This
mechanism both explains the rapid growth and provides a good estimate for the
number of waves observed in the experimental configuration. In addition, time-
marching the (linearised) two-dimensional flow field of a Fourier mode in conjunction
with a developing unsteady rotationally symmetric base flow at small values of the
Ekman number shows good agreement with the (local) boundary-layer analysis and
demonstrates that the instability is realised in the full field equations.

Although the instability waves at the ‘front’ arise from an inflectional instability,
the importance of centrifugal modes (as highlighted by MM) is also confirmed in
our analysis. The inflectional instability is, in essence, governed by a one-dimensional
eigenvalue problem because of the separation of time scales obtained for Ek � 1.
However, no such eigenvalue problem is available for the centrifugal instability, which
can only be rigorously described in the context of an appropriately formulated initial-
value problem. The centrifugal instability develops on an asymptotically short time
scale O(Ek1/3Ω−1

f ) after the transition in the rotation frequency of the container and,
provided that Ωr > 0, the instability develops diametrically opposite the eruption point
in the container. For Ekman numbers typical of experimental values, Ek ≈ 10−3, the
time scales for the eruption and for growth of centrifugal modes are not particularly
well separated. We have demonstrated that the asymptotic boundary-layer predictions
regarding the growth of centrifugal modes caused by wall perturbations can be
obtained (and their nonlinear evolution captured) by careful computation of the
Navier–Stokes equations at finite values of Ek . We expect these developing transient
vortex states to become unstable to a secondary (non-axisymmetric) instability
mechanism; however we have not examined that problem in this work.

A feature of the experiments described by MM that we cannot explain is the
observed non-uniqueness of transient evolutions, as revealed by their phase–space
reconstruction methods. We can only echo their comments that this non-uniqueness
is likely to be associated with the nonlinear (non-axisymmetric) development of the
prevailing instability mechanisms. The description of such flows would require a
nonlinear three-dimensional unsteady solution of the field equations.

Throughout this work (to avoid the introduction of an additional parameter) we have
taken the change in rotation rate to be impulsive; and to facilitate comparison with
their work, we chose the curvature parameter, δ, to correspond to that of Madden et
al.’s experimental configuration. The qualitative nature of the results that we present
is unchanged by other values of δ = O(1). Moreover, a consequence of our choice of
scaling (3.5) is that the results at the equatorial points θ = 0,π are only influenced
by δ through a time rescaling. We have verified that our results apply to other
monotonic changes in the rotation rate, provided that the time scale over which the
transition occurs is sufficiently rapid compared to the rotation period of the container.
Indeed, even for transitions on the O(Ω−1

f ) time scale, the same qualitative features
are recovered, but typically the eruption of the boundary layer is delayed to rather
later times. However, a different small-time behaviour in the rotation rate of the
container would modify somewhat the asymptotic scalings associated with the onset of
a centrifugal instability, as described by (6.7), primarily because the base flow would
no longer be an impulsive Rayleigh layer.
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We conclude by reiterating that this system provides an ideal test-bed for a detailed
investigation of the role of boundary-layer singularities, and associated instabilities
in fluid mechanics. The closed nature of the flow domain means that the boundary
conditions relevant to computation of the Navier–Stokes system are all well defined,
with no modelling of inflow/outflow conditions required. Similarly the structure of the
boundary layer lends itself to asymptotic description in the axisymmetric regime. In
this sense it is an ideal problem for a combined attack by numerical, asymptotic and
experimental methods.
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Appendix. The governing equations

In the coordinate system of figure 1, the dimensionless Navier–Stokes reduce to:

∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂θ
+ δw

h

∂u

∂φ
− v

2

r
− δ cos θ

h
w2 =−∂p

∂r

−Ek

{
1
rh

∂

∂θ

[
h

(
∂v

∂r
+ v

r
− 1

r

∂u

∂θ

)]
− δ

2

h2

∂2u

∂φ2
+ δ

h

(
∂

∂φ

∂w

∂r
+ δ cos θ

h

∂w

∂φ

)}
,

(A 1a)
∂v

∂t
+ u

∂v

∂r
+ v

r

∂v

∂θ
+ δw

h

∂v

∂φ
+ uv

r
+ δ sin θ

h
w2 =−1

r

∂p

∂θ

+Ek

{
1
h

∂

∂r

[
h

(
∂v

∂r
+ v

r
− 1

r

∂u

∂θ

)]
+ δ

2

h2

∂2v

∂φ2
− δ

hr

∂

∂θ

∂w

∂φ
+ δ

2 sin θ
h2

∂w

∂φ

}
, (A 1b)

∂w

∂t
+ u

∂w

∂r
+ v

r

∂w

∂θ
+ δw

h

∂w

∂φ
+ δ cos θ

h
uw− δ sin θ

h
vw=−δ

h

∂p

∂φ

+Ek

{
1
r2

∂

∂θ

[
1
h

(
h
∂w

∂θ
− δr sin θw

)]
+ 1

r

∂

∂r

[
r

h

(
h
∂w

∂r
+ δ cos θw

)]
−
(
∂

∂r
+ 1

r

)
δ

h

∂u

∂φ
− 1

r

∂

∂θ

(
δ

h

∂v

∂φ

)}
, (A 1c)

∂u

∂r
+ (1+ 2δr cos θ)

rh
u+ 1

r

∂v

∂θ
− δ sin θ

h
v + δ

h

∂w

∂φ
= 0. (A 1d)

In this formulation, h = (1 + δr cos θ) is a dimensionless measure of the distance to
the central axis of rotation, where r = r∗/a, and δ = a/L is a curvature parameter. The
Ekman number is defined by Ek = ν/(Ua), where ν is the kinematic viscosity of the
fluid and U = aΩf is a relevant velocity scale. In the cross-sectional plane, the velocity
components are (u, v,w) in the coordinate system (r, θ, φ).
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boundary layers. Phys. Fluids 7, 1616.


	Unsteady flow in a rotating torus after a sudden change in rotation rate
	Introduction
	Formulation
	Rotationally symmetric Ek<< 1 boundary-layer evolution for t= O(1)
	The initial impulsive response for t<< 1
	Boundary-layer solutions at the attachment/detachment points, θ = 0, π 
	Numerical solution of the (θ-dependent) unsteady boundary layer
	The finite-time singularity

	Rotationally symmetric Navier--Stokes computations
	Non-axisymmetric instability of the unsteady axisymmetric base flow
	An asymptotic description of linear, non-axisymmetric, instability waves
	Experimental work of Madden & Mullin (1994)
	Non-axisymmetric stability determined from Navier--Stokes computations

	Centrifugal axisymmetric instability
	Navier--Stokes simulations with an isolated wall perturbation

	Conclusions
	Appendix. The governing equations
	References




