
International Journal of Heat and Mass Transfer 70 (2014) 851–855
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Technical Note
A note on unsteady laminar plumes/jets
0017-9310/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.054

⇑ Corresponding author. Tel.: +44 1612755918.
E-mail address: richard.hewitt@manchester.ac.uk (R.E. Hewitt).
R.E. Hewitt a,⇑, R. Bonnebaigt b

a School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
b DAMTP, Wilberforce Road, Cambridge CB3 OWA, United Kingdom

a r t i c l e i n f o
Article history:
Received 15 November 2013
Accepted 16 November 2013
Available online 18 December 2013

Keywords:
Boundary-layer
Plume
Jet
Unsteady
Pulsatile
a b s t r a c t

We consider the laminar downstream evolution of a time-varying source of momentum and buoyancy in
a boundary-layer formulation. The recent work of Hewitt and Duck (2011) [5] showed that pulsatile lam-
inar jets (in a boundary-layer model) are susceptible to a propagating wave disturbance that grows
downstream. However, the work of Marzouk et al. (2003) [4] presented results for a periodic pulsatile
laminar (vertical) jet with heat transfer, for which the pulsation decayed downstream. This motivates
the present investigation, to examine if the thermal effects included by Marzouk et al. inhibit the growing
wave phenomenon that has been found in the momentum driven case. However, in contrast to Marzouk
et al., the present results demonstrate that downstream growth still exists in (vertical) laminar boundary
layers when buoyancy effects are included. Our results are carefully validated against known similarity
solutions in the steady case, and with both a linearised spectral decomposition for the pulsatile case
and an asymptotic description of the resulting wave’s spatial growth.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction and formulation

We consider the downstream evolution of an unsteady source
of buoyancy and momentum in the form of a free jet/plume, which
exists in an otherwise quiescent Boussinesq fluid at high Reynolds
numbers. The form of the unsteadiness is a (nonlinear) pulsation
superimposed onto a steady component at the source of the jet/
plume. In the absence of thermal effects, the steady free jet has
had a long history ever since its initial introduction by Schlichting
[1], Bickley [2]; a well known similarity form exists that is an exact
reduction of the laminar boundary-layer equations. This similarity
form describes the downstream limit of any uni-directional (stea-
dy) momentum source. When the jet is extended to also include a
source of buoyancy, and the momentum source is aligned with lo-
cal gravity, the near-source flow is typically momentum driven,
but sufficiently far downstream the evolution becomes ‘plume-
like’, being forced by buoyancy. How quickly this transition occurs
is dependent on the relative influence of momentum and buoyancy
in the source conditions. Again an exact reduction of the boundary-
layer system exists, which describes the far-field plume state, as
presented by Brand and Lahey [3].

To address the influence of unsteady effects, the paper of Mar-
zouk et al. [4] considers both a free and a wall jet/plume, both in
the context of a laminar boundary layer system. The motivation
for examining such flows is discussed at some length in their work,
but here we wish to focus primarily on the conclusions and results
that were arrived at in their analysis. The jet is aligned vertically, a
pulsation is introduced in the source momentum, and this source
pulsation is observed to decay downstream in their numerical re-
sults. This result is somewhat at odds with the recent work on pul-
sation of laminar boundary-layer jets (in the absence of any
buoyancy) by Hewitt and Duck [5]. This later work demonstrates
that any pulsation of the source momentum (at frequency X) must
necessarily lead to a downstream growing perturbation, with a
growth that is proportional to:
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in the case of a free jet (a similar result can be found for the wall
jet). Here c1;2 are known constants, x� is the dimensional down-
stream coordinate, U the source velocity scale, h an initial jet width,
and m the kinematic viscosity. The dimensionless parameters are a
Reynolds number, Re ¼ Uh=m, and a Reynolds-times-Strouhal num-
ber S ¼ Xh2

=m. The bulk of these asymptotic results can also be
found in the work of Riley et al. [6] in the case of a free jet. This
growing mode is a locally-periodic wave, with a local wave number
proportional to Re�

1
3ðx�=hÞ

1
3, and a phase speed that is equal to the

maximum speed of the jet. Of particular note here is that the spatial
growth rate (1) remains unbounded as the dimensionless measure
of pulsation frequency, S, is increased. In the high-frequency limit,
the wavelength of this mode ultimately becomes comparable to
the boundary layer thickness and these growing waves connect to
inviscid Rayleigh modes; as mentioned by Cowley et al. [7].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2013.11.054&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.054
mailto:richard.hewitt@manchester.ac.uk
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.11.054
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  0.02  0.04  0.06  0.08  0.1  0.12

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

(a)

(b)

Fig. 1. (a) Solid lines show the centerline downstream velocity of steady solutions
to (2) subject to (3) with A ¼ 0;G0 ¼ 5, r ¼ 0:71 and c ¼ 5;10;20;40 (increasing in
the direction of the arrow shown), (b) The solid line shows a periodic solution of (2)
subject to (3) with A ¼ 0:03; sinðtÞ ¼ 1;G0 ¼ 5, r ¼ 0:71; c ¼ 40 and S ¼ 188:5. The
dashed line shows the corresponding underlying steady flow repeated from figure
(a). In both cases the circular points indicate the data of [4] Fig. 8, which are in
agreement for steady solutions (a) but not for unsteady solutions (b).

852 R.E. Hewitt, R. Bonnebaigt / International Journal of Heat and Mass Transfer 70 (2014) 851–855
This paper is motivated by the contrasting results of Marzouk
et al. [4] and Hewitt and Duck [5]. The physical difference of these
two investigations lies in the inclusion of thermal effects and buoy-
ancy. It is of some interest to investigate the effect of such forcing,
to clarify if inclusion of a body force can eliminate the growing
wave perturbation as the near orifice (momentum) jet develops
to a larger scale (buoyant) plume. To this end, we focus attention
on the vertically aligned free jet, where the influence of buoyancy
is to accelerate the underlying flow, the retarding case that leads to
reverse flow will not be addressed.

We begin with the two-dimensional boundary-layer equations
and formulate the problem in terms of a dimensional streamfunc-
tion W�ðx�; y�; t�Þ and temperature field T�ðx�; y�; t�Þ. Here ðx�; y�Þ is
a Cartesian coordinate system, x is aligned with the streamwise
direction and t� denotes the dimensional time. At the source of
the jet/plume we have a streamwise velocity scale of U, tempera-
ture of T0, transverse length scale h and a pulsation frequency X,
whilst in the ambient fluid the temperature is T1 and density is
q1 (both constants). The natural dimensionless variables are
therefore introduced via: W� ¼ UhWðx; y; tÞ; T� ¼ T1 þ T1Tðx; y; tÞ;
y� ¼ yh; x� ¼ Uh2x=m (giving a Reynolds number, Re ¼ Uh=m, which
is of course assumed to be large) and t� ¼ t=X. This leads to the
dimensionless governing equations in the form

SWyt þWyWyx �WxWyy ¼ Wyyy þH; ð2aÞ

SHt þWyHx �WxHy ¼
1
r

Hyy; ð2bÞ

where (as defined above) S ¼ Xh2
=m, and r ¼ m=j is a Prandtl num-

ber for a thermal diffusivity j. The temperature measure H is de-
fined as H ¼ ðgbT1h2Þ=ðmUÞTðx; y; tÞ where b is a coefficient of
thermal expansion. This system is to be solved subject to

Wðx ¼ 0; y; tÞ ¼ W0ðy; tÞ; Hðx ¼ 0; y; tÞ ¼ H0ðy; tÞ; ð2cÞ
Wyyðx; y ¼ 0; tÞ ¼ 0; Hyðx; y ¼ 0; tÞ ¼ 0; Wðx; y ¼ 0; tÞ ¼ 0; ð2dÞ
Wyðx; y!1; tÞ ! 0; Hðx; y!1; tÞ ! 0; ð2eÞ
Wðx; y; t ¼ 0Þ ¼ Winitðx; yÞ; Hðx; y; t ¼ 0Þ ¼ Hinitðx; yÞ; ð2fÞ

where (2d) are the appropriate symmetry conditions to be imposed
along the centreline (y ¼ 0) of the jet/plume.

We begin our discussion by comparing a numerical solution of
(2) with the data of Marzouk et al. [4], specifically for the case pre-
sented in Fig. 8 of their paper. In terms of the formulation given
above, the parameters and source conditions of Marzouk et al.
[4] correspond to:

W0 ¼
yð1þ A sinðtÞÞ; if 0 6 y 6 1

2 ;
1
2 ð1þ A sinðtÞÞ; if y > 1

2 ;

(
H0 ¼

G0; if 0 6 y 6 1
2 ;

0; if y > 1
2 ;

(

ð3aÞ

where Fig. 8 corresponds to the choices G0 ¼ 5 (being a Grashof–
Reynolds number ratio), and S ¼ 188:5. Increasing values of G0

and S corresponding to higher source temperatures and higher fre-
quencies of pulsation respectively.

Although Marzouk et al. [4] impose discontinuous (in y) source
conditions, we will instead impose a smoothed version, e.g.,

H0 ¼
G0

2
1þ tanh c

1
2
� y

� �� �� �
; ð3bÞ

with a similar expression for W0y, then examine the results for
increasing c, refining the discretisation to ensure that all features
are being accurately resolved.

As seen in Fig. 1(a) the steady solution (A ¼ 0) is in good agree-
ment with the results of Marzouk et al. as c is increased. However,
on the introduction of a 3% source pulsation (A ¼ 0:03), the down-
stream development of a periodic state is significantly altered, with
downstream growth being clearly visible. This downstream growth
is rapid and much less sensitive to the choice of c than the (steady)
base flow evolution. Given that our results show downstream
growth of source pulsations, but those of Marzouk et al. [4] do
not, we investigate this discrepancy further and take particular
care to offer both numerical and analytical validation.

2. Analysis and validation of results

An investigation of a range of pulsation amplitudes A, frequen-
cies S, scaled Grashof numbers G0 > 0 and Prandtl number r shows
that downstream growth is always obtained, a result that is in
agreement with the purely momentum driven jet case of Hewitt
and Duck [5] and the corresponding theory of Cowley et al. [7]. This
is very different behaviour than presented by Marzouk et al., but
we can validate this downstream evolution in a number of
respects.

Our numerical method employs the well-known Keller box
scheme [8]. The method is second order in both space and time.
Integration across the boundary layer and use of the boundary con-
ditions at the axis and the far field demonstrates that the down-
stream heat flux

Q ¼
Z 1

y¼0
Wyðx; y; tÞHðx; y; tÞdy ð4Þ
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Fig. 2. (a) The downstream centreline velocity of the linearised (A� 1) perturba-
tion, wy at y ¼ 0 as defined by (6), for G0 ¼ 1;r ¼ 0:71; c ¼ 40 at S ¼ 4 (dashed) and
S ¼ 12 (solid). (b) The corresponding nonlinear periodic solution for a pulsation
amplitude A ¼ 0:02 and S ¼ 12, evaluated along the centerline y ¼ 0, when
t ¼ 0;p=2;p;3p=2 (solid). A scaled linear result is shown as the dashed line to
highlight the nonlinear downstream wave steepening.
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is conserved for a steady flow (A ¼ 0). For a periodic flow, a further
integration over a period s ¼ 2p=S demonstrates that the time-
averaged heat flux

hQi ¼ s�1
Z tþs

t
Qðx; tÞdt ð5Þ

is also conserved. In both cases, as Q or hQi is conserved at all down-
stream locations, it can be determined from the known steady or
periodic conditions imposed at x ¼ 0. Given this initial value, we
can examine the maximum downstream deviation as a function
of spatial and temporal resolution in the numerical scheme. In both
instances the value converges quadratically with reductions in the
spatial–temporal step sizes, as expected for the numerical scheme.

2.1. Low amplitude pulsation

As a further validation, an obvious approach is to examine the
limit of small-amplitude source pulsation (A� 1). For small A,
we can linearise by seeking a solution in the form of

Wðx; y; tÞ ¼ �Wðx; yÞ þ A
2

wðx; yÞeit þ OðA2Þ þ c:c:; ð6aÞ

Hðx; y; tÞ ¼ �Hðx; yÞ þ A
2

hðx; yÞeit þ OðA2Þ þ c:c:; ð6bÞ

where �W; �H are the underlying steady flow and ‘c:c:’ indicates the
complex conjugate. Substitution into (2) results in a linear parabolic
problem for the perturbations w and h, which can be marched
downstream, subject to the corresponding (linearised) source con-
ditions obtained from (3).

In Fig. 2(a) we show the evolution of the axis perturbation
speed wyðx; y ¼ 0Þ for Pr ¼ 0:71;G0 ¼ 1; c ¼ 40 and S ¼ 4;12. It is
clear that higher frequencies are associated with a more rapid
downstream growth and a shorter wavelength; this will be fully
described in the far-downstream limit below.

In Fig. 2(b) we show the axis-values of downstream speed
Wyðx; y ¼ 0; tÞ and temperature Hðx; y ¼ 0; tÞ for a nonlinear peri-
odic state of pulsation amplitude of A ¼ 0:02 (again
Pr ¼ 0:71;G0 ¼ 1; c ¼ 40; S ¼ 12) and t ¼ 0;p=2;p;3p=2. For com-
parison, also included is the corresponding scaled linear result of
�Wyðx; y ¼ 0Þ þ 0:02wyðx; y ¼ 0Þ and �Hðx; y ¼ 0Þ þ 0:02hðx; y ¼ 0Þ. At
a pulsation amplitude of A ¼ 0:02 there is agreement between
the nonlinear and the scaled linearised solution near to the source.
However, further downstream we find a steepening of the propa-
gating wave as nonlinear effects become important, a behaviour
that is consistent with that found in the jet flows considered by He-
witt and Duck [5].

2.1.1. A far-downstream description of the wave
As presented by Brand and Lahey [3] a self-similar steady solu-

tion exists to (2) that, in the context of the full parabolic problem
with arbitrary source profiles, forms a far-downstream limiting
state:

�Wðx; yÞ ¼ ðxþ x0Þ1�bGðYÞ; ð7aÞ
�Hðx; yÞ ¼ ðxþ x0Þ1�4bHðYÞ; ð7bÞ

Y ¼ y

ðxþ x0Þb
; ð7cÞ

where x ¼ �x0 is a (virtual) origin. The profiles G and H satisfy

G000 þ H þ ð1� bÞGG00 þ ð2b� 1ÞðG0Þ2 ¼ 0; ð7dÞ
H00 þ rð1� bÞGH0 þ rð4b� 1ÞHG0 ¼ 0; ð7eÞ

with boundary conditions Gð0Þ ¼ G00ð0Þ ¼ H0ð0Þ ¼ 0 and Hð1Þ ¼
G0ð1Þ ¼ 0. The exponent b is determined by requiring that the net
downstream heat flux (4) is independent of the downstream posi-
tion, giving

b ¼ 2
5
: ð7fÞ

In (7), the functional forms G and H are to be determined such
that the integral (4) matches the known source heat flux imposed
at x ¼ 0. To satisfy the integral constraint, we note that the equa-
tions governing G and H are invariant under the transformation

G! CG; H ! C4H; Y ! Y=C: ð8Þ

This allows us to specify an arbitrary non-zero amplitude for G or H,
then an appropriate value of C can be determined from an evalua-
tion of (4) using the known source conditions at x ¼ 0.

Given this far-downstream steady self-similar base flow, we can
now provide an asymptotic description of the downstream devel-
opment of small-amplitude unsteadiness. To achieve this we use
the similarity solution (7) in the expansion (6), after which it is
convenient to rewrite:

wðx; yÞ ¼ ðxþ x0Þ1�bf ðX;YÞ; ð9aÞ
hðx; yÞ ¼ ðxþ x0Þ1�4bhðX;YÞ; ð9bÞ
X ¼ ðxþ x0Þ2b

; ð9cÞ

where Y is defined in (7). The linear perturbation equations are then
(on replacing b ¼ 2=5 for the plume scaling)
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3ðfGÞYY � 8f Y G0 þ 5f YYY þ 5hþ Xð�5iSfY þ 4ðG00fX � G0fXYÞÞ ¼ 0

ð10aÞ

and

3ðhGÞYY þ 3ðfHÞYY � 6f Y H0 � 6hY G0 þ 5hYY

þ X �5iShþ 4ðH0fX � G0hXÞ
� �

¼ 0; ð10bÞ

subject to
f ðY ¼ 0Þ ¼ fYYðY ¼ 0Þ ¼ hY ðY ¼ 0Þ ¼ fY ðY !1Þ ¼ hðY !1Þ ¼ 0.

We do not repeat the analysis of [5] here, but simply note that
one can obtain a locally wave-like solution for the perturbation
ðf ;hÞ in an outer, Y ¼ Oð1Þ, region as X !1 by balancing the terms
proportional to X in (10):

f ðX;YÞ ¼ ðf0ðYÞ þ � � �Þ expð�iKX þ a2X1=2 þ a3 log X þ � � �Þ; ð11aÞ
hðX;YÞ ¼ ðh0ðYÞ þ � � �Þ expð�iKX þ a2X1=2 þ a3 log X þ � � �Þ; ð11bÞ

where, K ¼ 5S=4G0ð0Þ is a local wavenumber, and a2;3 are constants
to be found, with

f0ðYÞ ¼ G0ðYÞ � G0ð0Þ; h0ðYÞ ¼ H0ðYÞ: ð11cÞ

This wavenumber K corresponds to a leading order phase speed that
matches the axial velocity of the underlying jet/plume.

This outer solution does not satisfy all the required conditions
on Y ¼ 0, and this is rectified in an inner viscous critical layer that
also determines the factor a2, the real part of which determines the
downstream spatial growth. In this layer, a balance of (10) re-
introduces the viscous term fYYY when Y ¼ OðX�1=4Þ as discussed
in both [6,5]. Despite this system being a plume, rather than a
jet, the analysis still follows that given in the appendix of [5], be-
cause the buoyancy term h in (10a) remains too small to enter into
the analysis for a2. However, the thermal nature of the plume does
still play a role in the downstream growth via the base flow prop-
erties. The result (A8) of Hewitt and Duck [5] can be rewritten as

a2 ¼
ffiffiffiffi
iS
p �G000ð0Þ

2b2G0ð0Þ3

 !1=2

; ð12Þ

on recognising that for a planar jet flow G000ð0Þ þ ð2b� 1Þ
G0ð0Þ2 ¼ 0. For a planar plume as discussed here, evaluation of
(7d) at the axis of symmetry shows that G000ð0Þ þ Hð0Þ þ ð2b�
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Fig. 3. (a) The downstream evolution of the centreline velocity of the steady base flo
downstream asymptotic prediction (7) (dashed lines). (b) The downstream growth metric
lines), compared to the asymptotic (x� 1) predictions of a2r as obtained from (13) (dash
are made with a virtual origin of x0 ¼ 0, which avoids any fitting to the data.
1ÞG0ð0Þ2 ¼ 0, and the downstream spatial growth (12) is now
modified slightly to be

a2 ¼
ffiffiffiffi
iS
p Hð0Þ þ ð2b� 1ÞG0ð0Þ2

2b2G0ð0Þ3

 !1=2

: ð13Þ

The temperature of the plume, its associated heat flux, the source
(scaled) Grashof number and the Prandtl number will all influence
this growth rate through the base flow quantities Hð0Þ and G0ð0Þ.

In conclusion, linearised harmonic perturbations to the base
plume flow are predicted to grow downstream in agreement with
our numerical results. For a perturbation of the form (6), if we con-
sider the magnitude of a periodic perturbation to the plume veloc-
ity at the axis, uc say, then our asymptotic theory predicts

ucðxÞ ¼ jwyðx;0Þj � Bðxþ x0Þd expða2rðxþ x0ÞbÞ ð14Þ

for large x, where a2r is the real part of (13), B is an amplitude con-
stant and d is a higher order algebraic attenuation coefficient re-
lated to a3 in (11). We do not determine d here, it is only found at
higher order in the expansion for large X.

Given the predicted form of (14), a quantitative comparison can
be made to our linearised numerical results. Fig. 3(a) demonstrates
that the far-field steady solutions (in the absence of pulsation:
A ¼ 0) are in agreement with the associated self-similar solutions
(7). To validate the downstream growth observed in a linear per-
turbation to this steady base flow, we compute the quantity

b�1ðxþ x0Þð1�bÞ u0cðxÞ
ucðxÞ

¼ a2r þ Oððxþ x0Þ�bÞ; ð15Þ

which for large x is predicted to asymptote to a2r , the real part of
(13). The numerical results of Fig. 3(b) are in agreement with this
asymptotic description both in the qualitatively observed down-
stream growth, and the quantitative exponential growth coefficient.

3. Discussion

The evolution of an unsteady laminar plume, modelled by the
two-dimensional boundary-layer equations, has been re-examined
by a combination of numerical solutions and an asymptotic
description far downstream. It is found that any unsteady pulsa-
tion of the source conditions leads to a downstream growing wave,
in contradiction to the numerical results of Marzouk et al. [4], in
-2
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(15) for S ¼ 4 and S ¼ 12, as determined from the linearised numerical results (solid

ed lines). Both (a) and (b) use parameters G0 ¼ 1, r ¼ 0:71; c ¼ 40, and comparisons



 0

 0.5

 1

 1.5

 2

-8 -6 -4 -2  0  2  4  6  8
 0

 0.5

 1

 1.5

 2

-6 -4 -2  0  2  4  6

(b)(a)

Fig. 4. Contours of (a) streamwise plume velocity Wyðx; y; tÞ and (b) Hðx; y; tÞ for a periodic pulsatile state, with A ¼ 0:02 and t ¼ 3p=2. Here G0 ¼ 1; c ¼ 40;r ¼ 0:71 and
S ¼ 12. Contours levels are shown in increments of 0.05, starting at 0.05.
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which the unsteady perturbation decayed. Our nonlinear numeri-
cal results are validated against a linearised description in the limit
of small amplitude pulsation of the source conditions. The linear-
ised numerical results are in turn validated against an analytic
asymptotic description far from the source.

Our linearised theory can be constructed far from the source,
because in this region the underlying steady plume is self similar,
which allows for an analogous description of the superposed oscil-
lations. This analytical description predicts that (locally) the per-
turbation is a wave of wavelength proportional to ðxþ x0Þ1=5,
which remains short compared to the ðxþ x0Þ2=5 downstream
thickening of the plume. In the linear regime (A� 1) the induced
wave propagates at the same speed as the underlying base flow
at leading order. However, the downstream propagation of the
wave is accompanied by spatial growth proportional to (in dimen-
sional terms)

x�

Re h

� �d

exp a2rS
1
2Re�

2
5

x�

h

� �2
5

" #
; ð16Þ

where we leave d undetermined and a2r is given by (13); this can be
compared to the result (1) obtained in the absence of buoyant
forcing.

A notable feature of (16) is that the spatial growth is propor-
tional to S1=2, which is the dimensionless frequency of oscillation.
Even in the ideal case of a single-frequency pulsation, quadratic
nonlinearity of the full boundary-layer system will still cause a cas-
cade to higher frequencies that grow ever more rapidly down-
stream. This subtle effect was shown in Hewitt and Duck [5] to
lead to a breakdown of the boundary-layer equations at a finite
distance downstream from the source, a point at which the
assumption that the flow develops over a long downstream length
scale of OðRe hÞ fails; h being the width of the flow at its source.
The same features exist in this plume case and we do not repeat
them in detail, but Fig. 4 shows contours of streamwise plume
velocity and temperature for the same periodic state shown in
Fig. 2(b). The growth of pulsations is clearly seen, as is the wave
steepening. Eventually a breakdown of the boundary layer system
is obtained in the manner described by [5] at a critical value of x,
indicating the existence of OðhÞ downstream length scales and a
loss of the boundary-layer approximation.

These (inflectional) flows are known to be unstable to inviscid
modes of downstream wavelength OðhÞ, so the downstream devel-
opment of the flow is crucially dependent on the amplitude and
frequency spectrum of any noise present in the system. However,
the mechanism discussed herein is best viewed as being a process
able to amplify small scale high-frequencies through a combina-
tion of spatial growth and nonlinear interaction, which can then
feed into inviscid instabilities (at the critical downstream position).
Furthermore, although we have focussed exclusively on laminar
plumes in this discussion, we may also note that the classical inte-
grated (turbulent) plume model of Morton et al. [9] suffers from an
analogous downstream growth when extended to unsteady source
conditions (as do other similar turbulent plume models), as re-
cently demonstrated by Scase and Hewitt [10]. This is perhaps
suprising, given that the turbulent integrated model removes all
detail of the flow profile, but the qualitative similarities are striking
and further work is warranted on other comparable models of tur-
bulent jets/plumes and their response to pulsation of source
conditions.
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