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We investigate three-dimensional (laminar) boundary layers that include a spanwise
scale comparable to the boundary-layer thickness. A forcing of short spanwise scales
requires viscous dissipation to be retained in the two-dimensional cross-section,
perpendicular to the external flow direction, and in this respect the flows are related
to previous work on corner boundary layers. We use two examples to highlight the
main features of this category of boundary layer: (i) a flat plate of narrow (spanwise)
width, and (ii) a narrow (spanwise) gap cut into an otherwise infinite flat plate; in
both cases the plate is aligned with a uniform oncoming stream. We find that a
novel feature arises in connection with the external flow; the presence of a narrow
gap/plate (or indeed any comparable short-scale feature of long streamwise extent)
necessarily modifies the streamwise mass flux in that vicinity, which in turn induces
an associated boundary-layer transpiration on the same short spanwise length scale.
This (short-scale) transpiration region leads to a half-line-source/sink correction to
the outer inviscid, irrotational flow. Crucially, the volumetric flux associated with this
line-source/sink must be explicitly included as part of the computational procedure
for the leading-order boundary layer, and as such there is a weak interaction between
the outer (inviscid) flow and the boundary layer. This is a generic feature of boundary
layers that are forced through the presence of short-scale spanwise variations.
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1. Introduction
Boundary-layer flows over surfaces with short-scale spanwise disturbances are a

common feature in numerous applications, the most obvious being in aerodynamic
settings. The ‘average’ wing/lifting surface of an aircraft exhibits numerous smooth
and non-smooth variations, even close to a leading edge, some of which persist
in the chord-wise direction. Diffusion of momentum in the cross-sectional plane
is a dominant feature for such geometries, but the governing equations remain
parabolic in the downstream coordinate. Such situations have been referred to as
‘three-dimensional parabolic flow’ by Patankar & Spalding (1972), Patankar (1980),
and similar ‘longitudinally parabolised’ regions have arisen in compressible flows, as
described by Neyland et al. (2008). This flow geometry presents a combination of
analytical and computational difficulties, associated with viscous diffusion acting over
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the entire downstream cross-section. The aim of this paper is to (i) better understand
the physical effects, on an otherwise classical, two-dimensional laminar boundary
layer, of deviations in surface characteristics that have spanwise scales comparable to
the boundary-layer thickness, but have a large streamwise extent and (ii) present a
rational and robust procedure for the computation of such flow states. One subclass of
‘three-dimensional parabolic flow’ that has aroused a significant amount of discussion
is that of the flow near a streamwise-aligned semi-infinite corner formed by the
intersection of two flat plates; this is strongly motivated by application to wing–body
junctions. We first (briefly) review the existing material on corner boundary layers
before focusing on the related class of flows that will form our current investigation.

The first theoretical study on streamwise-aligned corner boundary layers can be
attributed to Carrier (1947), although it was subsequently pointed out by Kemp (1951)
that not all momentum equations were satisfied in this formulation. Early attempts at
obtaining numerical solutions to the problem were made by Loitsianskii & Bolshakov
(1951) and Levy (1959). The development of singular perturbation theory in the
1960s enabled Rubin (1966) to develop the first asymptotically rigorous structure (in
the limit of large Reynolds number), describing the blending of two boundary layers
(one is extending in the spanwise direction, the other in the transverse direction).
However, although the basic mathematical structure to the problem was then known,
the numerical solution proved not to be straightforward, as evidenced by the differing
published results of Rubin & Grossman (1969), Pal & Rubin (1971), Zamir (1973),
Desai & Mangler (1974), Ghia (1975) and Zamir (1981). The work of Dhanak
& Duck (1997) suggested that the imposition of (inaccurate) far-field boundary
conditions on truncated domains was the likely culprit for these numerical disparities.
A determination of the correct far-field constraints is a non-trivial issue in this class
of flows, and is a topic that will be returned to in this work. Indeed, in investigating
the far-field behaviour of this class of flow, it was noted by Ridha (1992) and Dhanak
& Duck (1997) that in addition to the (expected) two-dimensional Blasius solution,
an alternative, three-dimensional state also exists.

Over the years, experimental studies of corner flows have also been undertaken,
including those by Zamir & Young (1970), Zamir & Young (1979), Zamir (1981),
Barclay & El-Gamal (1983) and more recently Park et al. (2012). Most of these
studies have been hot-wire based, owing to the inherent difficulties of visualising the
small-scale spanwise features associated with the corner. However, the experiments
collectively suggest that the laminar flow is highly sensitive to the form of the
leading edge and to flow perturbations, which become unstable at significantly lower
Reynolds numbers than for two-dimensional Blasius boundary layers. Dhanak &
Duck (1997) and Lakin & Hussaini (1984) presented greatly simplified analyses,
using quasi-parallel assumptions, although these studies did little to explain the
disparity in stability characteristics between corner and (classical, two-dimensional)
boundary-layer flows.

The primary difficulty in undertaking a proper stability analysis of such states, even
assuming a streamwise parallel flow approximation, is the (strongly) two-dimensional
nature of the base flow at a given downstream cross-section, leading to a ‘biglobal’
(i.e. 2D) eigenvalue problem (Theofilis 2003). Balachandar & Malik (1995) were the
first to undertake a stability study of the two-dimensional base flow, although for
the purposes of the stability analysis, they assumed infinite Reynolds number, leading
to the two-dimensional analogue of the Rayleigh equation. An inclusion of viscous
effects (and, hence, Reynolds number) into the stability equations was carried out by
Parker & Balachandar (1999). Non-parallelism of the base flow has been incorporated,
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using a parabolised stability equations approach by Galionis & Hall (2005), although
this still did not explain the low stability threshold observed in experiments. In a
more recent study, Alizard, Robinet & Rist (2010) hypothesised that the onset of an
inflectional mechanism may be an explanation for this discrepancy.

A further paper, regarding the spatial (streamwise) development of corner
boundary-layer flows, was Duck, Stow & Dhanak (1999), in which it was shown how
the far field (and, hence, global) flow can be susceptible to algebraically growing
spatial modes, related to those described by Luchini (1996); a key point to note
is that classical Blasius flow is a case which exhibits such a mode. Duck, Stow &
Dhanak (2000) showed that this type of ‘instability’ was not confined to corner flows,
but is a quite generic feature found in boundary layers, with spanwise flow variations.
Subsequently, the determination of ‘optimal disturbances’, i.e. the determination of
the initial perturbations which lead to the maximum energy growth in Blasius-type
boundary layers, has been considered by Luchini (2000) and Zuccher, Luchini &
Bottaro (2004), the latter paper also incorporating nonlinear effects.

In this work we approach the same set of governing equations, as utilised in the
aforementioned corner boundary-layer studies, which is a system that applies to any
(high-Reynolds-number) flow in which viscous dissipation is of equal importance in
both the spanwise and transverse directions, but change the context from the usual
‘corner flows’.

The corner boundary-layer equations (despite the name) describe any (long)
streamwise-aligned feature of sufficiently short spanwise scale. For example, this may
be a short-scale variation in surface properties (e.g. wall transpiration or changes in
the no-slip condition) or a surface deflection (e.g. a transverse ridge, or an additional
boundary of finite transverse length that remains contained within the boundary layer).
Herein we focus on two example problems that induce spanwise diffusion through a
discontinuity in boundary conditions: (i) a flat plate of narrow (spanwise) width; and
(ii) a narrow (spanwise) gap cut into an otherwise infinite flat plate, examining the
solution in the neighbourhood of the plate edge.

In addition to being of interest in their own right, this class of flows constitutes an
intermediate problem between (well-understood) classical boundary layers and (less-
well-understood) corner boundary layers. As such, the mean flows we present may
provide an alternative route for our developing understanding of the stability properties
of comparable three-dimensional flows (such as corner flows), or indeed the more
complex supersonic examples of the compensation regime of Neyland et al. (2008,
§ 8.2.2). However, as we shall address in detail below, even the computation of base
flows that develop downstream in a self-similar manner requires careful consideration.

We begin by formulating the boundary-layer equations in § 2, maintaining diffusive
effects in the cross-section. Appropriate boundary conditions at the base of the flow
domain are provided in § 2, but the more complicated far-field constraints are outlined
in § 3, where a computational formulation is presented. Results are presented that
focus on the physical aspects of the flow in § 4. Non-uniqueness exists in these flows
and § 5 provides some brief details of alternative solutions. We make some concluding
remarks in § 6.

2. Boundary-layer formulation

We consider a flat plate placed at zero incidence into a uniform oncoming stream
of a constant density incompressible fluid. The short-scale spanwise behaviour will
be induced by allowing either the plate to have a ‘narrow’ gap (the axis of which
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(a)

(b)

FIGURE 1. Schematic of the two flow domains: (a) a narrow gap in an otherwise
semi-infinite plate; (b) a narrow plate. In both cases the plate is aligned with a uniform
oncoming stream of speed U∗∞ and the plate side edge is at x∗ =±F(x∗).

is aligned with the oncoming stream) or the plate width in the spanwise direction to
be ‘thin’. We use ‘narrow’ and ‘thin’ to indicate that the spanwise length scale is
comparable with the (local) boundary-layer thickness in the transverse, y∗, direction.
The asterisk superscript will be used to indicate dimensional quantities throughout this
work. A schematic of the flow geometry is shown in figure 1.

In both cases shown in figure 1(a,b) there is a ‘leading edge’ at x∗ = 0 and the
gap/plate edge is defined by z∗ =±F(x∗) with a uniform oncoming flow of velocity
U∗∞ (there is no free-stream pressure gradient to leading order). The flow is described
by a Cartesian coordinate system (x∗, y∗, z∗) with associated velocities (u∗, v∗, w∗),
such that z∗ = 0 is a line of symmetry and the flat-plate lies in the plane y∗ = 0.

We may non-dimensionalise in the usual (Blasius-like) manner, seeking a solution
in the form

(y∗, z∗)=
(

2x∗ν∗

U∗∞

)1/2

(η, ζ ), (2.1a)
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where this ζ scale is necessary to capture the short spanwise scales that will be of
interest to us, with

u∗ = U∗∞U(ζ , η)+ · · ·, (2.1b)

(v∗,w∗) =
(

U∗∞ν
∗

x∗

)1/2

(V(ζ , η)+ · · ·,W(ζ , η)+ · · · ). (2.1c)

The associated (reduced) pressure field is

p∗ = ρ∗U∗∞2

[(
ν∗

U∗∞x∗

)1/2

p1 + ν∗

U∗∞x∗
p2(ζ , η)+ · · ·

]
, (2.1d)

where ρ∗ is the constant density, ν∗ is the (constant) kinematic viscosity and p1 is
zero in the narrow plate case, but is a constant in the finite gap case (triggered by
the Blasius boundary-layer displacement).

We make the usual boundary-layer approximation, under the assumption that
the local Reynolds number x∗U∗∞/ν

∗ is large, and retain the leading-order terms.
The resulting boundary-layer system retains viscous diffusion in the cross-sectional
(constant x∗) plane owing to the length scales (2.1a). The leading-order system may
be simplified by cross-differentiation to eliminate the pressure correction, p2, and a
slight change of dependent variables to Φ and Ψ , defined as follows

V(ζ , η) = 1√
2
(ηU(ζ , η)−Φ(ζ , η)), (2.2a)

W(ζ , η) = 1√
2
(ζU(ζ , η)−Ψ (ζ , η)). (2.2b)

The above formulation results in the well-known ‘corner boundary-layer equations’
(see Rubin 1966; Ghia 1975; Dhanak & Duck 1997, for example), in the form:

2U =Φη +Ψζ , Θ =Ψη −Φζ , (2.3a,b)

and

∇2U = −ΦUη −ΨUζ , (2.4a)
∇2Θ = 2[ζUUη − ηUUζ ] −ΦΘη −ΨΘζ − 2UΘ, (2.4b)

and we can rewrite (2.3) as

∇2Φ = 2Uη −Θζ , (2.4c)
∇2Ψ = 2Uζ +Θη. (2.4d)

Here ∇2 is the two-dimensional Laplacian in the plane spanned by η and ζ . In what
follows, we will solve the problem using the formulation (2.4).

To highlight the dominant features of our example problems, we will focus attention
on cases where the edge of the plate is defined by F(x∗)= ζ0(ν

∗x∗/U∗∞)
1/2 for some

coefficient ζ0. This ensures that the spanwise length scale remains comparable to
the (developing) transverse boundary-layer thickness at all locations downstream of
the leading edge, and thus the similarity form is preserved. In terms of the rescaled
boundary-layer coordinate, the edge of the plate then becomes ζ =±ζ0.

2.1. A narrow gap
For the flow over a narrow gap, figure 1(a), the boundary conditions on η= 0 are

U =Ψ =Φ = 0, Θ =Ψη, on η= 0, ζ > ζ0, (2.5a)
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arising from no-slip and impermeability of the plate, together with

Uη =Ψη =Φ =Θ = 0, on η= 0, 0 6 ζ < ζ0, (2.5b)

corresponding to a symmetric flow in the gap region. On assuming a reflectional
symmetry about the ζ = 0 axis, we are also required to impose

Uζ =Φζ =Ψ =Θ = 0, on ζ = 0, η> 0, (2.5c)

and the far-field conditions will be introduced later.

2.2. A narrow plate
For the flow over a narrow plate, figure 1(b), the boundary conditions on η = 0 are
modified to

Uη =Ψη =Φ =Θ = 0, on η= 0, ζ > ζ0, (2.6a)

for a symmetric flow away from the plate, and

U =Ψ =Φ = 0, Θ =Ψη, on η= 0, 0 6 ζ < ζ0, (2.6b)

for no-slip and impermeability of the plate. The conditions on ζ = 0 remain as (2.5c).

3. A global computational formulation
Our task is to solve (2.4), subject to either (2.5) or (2.6) with suitable far-field

constraints. The far-field behaviour naturally divides into a response free from short
spanwise features (e.g. a Blasius boundary layer) plus a correction that is solely driven
by the short-scale gap/plate. We mirror this approach in the governing equations by
first rescaling based on the gap/plate ‘width’ ζ0:

ζ = ζ0ζ̂ , (3.1a)

U(ζ , η)= Û(ζ̂ , η), Φ(ζ , η)= Φ̂(ζ̂ , η), (3.1b)

Ψ (ζ , η)= ζ0Ψ̂ (ζ̂ , η), Θ(ζ , η)= ζ0Θ̂(ζ̂ , η), (3.1c)

then seeking a (nonlinear) perturbation of the form

Û = UB(η)+ Ũ(ζ̂ , η), (3.2a)

Φ̂ = ΦB(η)+ Φ̃(ζ̂ , η), (3.2b)

Ψ̂ = ζ̂ΨB(η)+ Ψ̃ (ζ̂ , η), (3.2c)

Θ̂ = ζ̂ΘB(η)+ Θ̃(ζ̂ , η), (3.2d)

where subscript ‘B’ indicates a known base solution that exists in the absence of any
short spanwise scale forcing.

The perturbation quantities are governed by

∇̂2Φ̃ = 2Ũ − Θ̃ζ̂ , (3.3a)

∇̂2Ψ̃ = 2ζ−2
0 Ũζ̂ + Θ̃η, (3.3b)
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∇̂2Ũ = −ΦBŨη − Φ̃U′B − Φ̃Ũη − ζ̂ΨBŨζ̂ − Ψ̃ Ũζ̂ , (3.3c)

∇̂2Θ̃ = 2
[
ζ̂ (UB + Ũ)Ũη + ζ̂ ŨU′B − ηζ−2

0 (UB + Ũ)Ũζ̂

]
− (ΦB + Φ̃)Θ̃η − ζ̂ Φ̃Θ ′B − Ψ̃ (ΘB + Θ̃ζ̂ )

− ζ̂ΨBΘ̃ζ̂ − 2(UB + Ũ)Θ̃ − 2ζ̂ ŨΘB, (3.3d)

where

∇̂2 ≡ ∂2

∂η2
+ 1
ζ 2

0

∂2

∂ζ̂ 2
. (3.3e)

The boundary conditions are obtained by substitution of (3.2) into (2.5) for the narrow
gap problem, or (2.6) for the narrow plate problem; we do not explicitly restate them
here.

3.1. Far-field conditions for the boundary layer: η� 1 at fixed ζ̂
The appropriate far-field conditions for the (leading-order) boundary-layer variables
are

Φ̃ ∼ Aη

ζ 2
0 ζ̂

2 + η2
, (3.4a)

Ψ̃ ∼ Aζ̂

ζ 2
0 ζ̂

2 + η2
, (3.4b)

Ũ = Θ̃ = 0, (3.4c)

for ζ 2+ η2� 1 (where ζ = ζ0ζ̂ ), away from any boundary. The coefficient A remains
an unknown (a priori) that must be determined as part of the computational procedure.
We will provide a physical interpretation of A in the Appendix to this paper; at this
stage we simply note that it measures a mass flux towards (A> 0) and away (A< 0)
the centreline η= ζ = 0 (y∗ = z∗ = 0) in the cross-sectional plane (fixed x∗).

The computational domain is truncated at η= η∞ and ζ̂ = ζ̂∞. If we naïvely impose
(3.4) as Dirichlet conditions for arbitrary A, then the resulting solution is (in general)
spurious, in the sense that it is not of boundary-layer type and will depend on the
choice of domain truncation via η∞ and ζ̂∞. This behaviour can be observed in
figure 2, where solutions are clearly seen to be sensitive to η∞ and ζ̂∞ at general
values of A. However, there is a critical value of A = A(ζ0) for which the solution
is of boundary-layer type and independent of all arbitrary computational parameters.
This state exists when the boundary layer is consistent with the correction to the
outer flow (as discussed in the Appendix), and is shown in figure 2 as the solid lines.
It is our assertion that this represents the ‘true’ value of A, triggered by the flow.

To obtain the interactive solution, for which A is determined as part of the process,
we impose (3.4b) and (3.4c) as Dirichlet conditions along η = η∞, whilst (3.4a) is
imposed as

∂Φ̃

∂η

∣∣∣∣∣
η=η∞
= A

ζ 2
0 ζ̂

2 − η2

(ζ 2
0 ζ̂

2 + η2)2
. (3.5)

This ‘softer’ derivative condition for flow into/out of the domain, along with a similar
treatment at the boundary ζ̂ = ζ̂∞ (described below), allows A to be determined such
that the solution is of boundary-layer type, that is it remains independent of the
domain size.
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FIGURE 2. The variation of ζ̂ Θ̃η(ζ̂ , η=0) (off-plate, for ζ̂ <1) and ζ̂ Θ̃(ζ̂ , η=0) (on-plate,
for ζ̂ > 1) in the case of the narrow gap problem with ζ0 = 5: (a) a fixed computational
domain η∞ = ζ̂∞ = 40 with non-interacting ‘solutions’ evaluated with A = 0 (long dash),
A = 4 (short dash), A = 8 (dotted) and A = 12 (dot–dash), increasing in the direction
of the arrow shown; (b) non-interacting states at a fixed value of A = 0 (long dash)
and increasing domain sizes, ζ̂∞ = η∞ = 10, 20, 40. In both (a) and (b) the analogous
interacting solutions are also presented (solid lines), for which A is determined as part of
the computational procedure; such states are clearly independent of arbitrary choices of
computational domain size, unlike their non-interacting counterparts.

3.2. Far-field conditions for the boundary layer: ζ̂ � 1, a determination of A
3.2.1. A narrow plate

For the geometry of a narrow plate, figure 1(b), the formulation is relatively
straightforward as (3.4) remains valid for all η if ζ̂ � 1. Along the boundary ζ̂ = ζ̂∞
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we impose (3.4a) and (3.4c) as Dirichlet conditions, whilst (3.4b) is imposed as

∂Ψ̃

∂ζ̂

∣∣∣∣∣
ζ̂=ζ̂∞
= A(η2 − ζ 2

0 ζ̂
2)

(ζ 2
0 ζ̂

2 + η2)2
, (3.6)

and the additional unknown coefficient A is determined by the extra constraint

ζ 2
0 ζ̂∞ Ψ̃ (ζ̂∞, η= 0)= A, (3.7)

which follows from (3.4b).

3.2.2. A narrow gap
For a narrow gap in an otherwise infinite flat plate, as shown schematically in

figure 1(a), the conditions to be imposed along ζ̂ = ζ̂∞ are a little more involved, as
(3.4) is not valid near to the plate, where viscous effects must be taken into account.
For η=O(1), a large-ζ̂ asymptotic solution exists in the form

Ũ = AŪ(η)/(ζ 2
0 ζ̂

2)+ · · · , (3.8a)

Φ̃ = AΦ̄(η)/(ζ 2
0 ζ̂

2)+ · · · , (3.8b)

Ψ̃ = AΨ̄ (η)/(ζ 2
0 ζ̂ )+ · · · , (3.8c)

Θ̃ = AΘ̄(η)/(ζ 2
0 ζ̂ )+ · · · . (3.8d)

Therefore, the leading-order functional form for the (nonlinear) perturbation induced
by the short spanwise scale features can be determined from a (sixth-order)
one-dimensional boundary-value problem for (Ū, Φ̄, Ψ̄ , Θ̄) subject to Ū= Φ̄ = Ψ̄ = 0
on η= 0 and Ū, Θ̄→ 0, Ψ̄ → 1 as η→∞.

Rather than imposing (3.8), which is only valid for η=O(1), we instead construct
composite solutions for Ψ̃ and Φ̃ using (3.4) and (3.8):

Ψ̃ ∼ A
ζ 2

0

{
Ψ̄ (η)

ζ̂
− η2

ζ̂ (ζ 2
0 ζ̂

2 + η2)

}
, (3.9a)

Φ̃ ∼ A
ζ 2

0

{
Φ̄(η)

ζ̂ 2
− η3

ζ̂ 2(ζ 2
0 ζ̂

2 + η2)

}
. (3.9b)

The boundary conditions imposed at ζ̂ = ζ̂∞ are then

ζ̂ Ũζ̂ + 2Ũ = 0, (3.10a)

ζ̂ Φ̃ζ̂ + 2Φ̃ = 2Aη3

(ζ 2
0 ζ̂

2 + η2)2
, (3.10b)

ζ̂ Ψ̃ζ̂ + Ψ̃ =
2Aη2ζ̂

(ζ 2
0 ζ̂

2 + η2)2
, (3.10c)

ζ̂ Θ̃ζ̂ + Θ̃ = 0. (3.10d)

In this case, as (3.7) is trivially satisfied by the no-slip constraint, we therefore
determine the volume flux coefficient A by the analogous constraint

ζ 2
0 ζ̂∞ Θ̃(ζ̂∞, η= 0)= AΘ̄(0), (3.11)

which follows from (3.8d).
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FIGURE 3. Evolution of the volumetric flux amplitude, A, as induced by the short
spanwise scales for increasing gap/plate width parameter ζ0. The upper solid line
corresponds to the narrow-gap problem, where the gap acts as a half-line sink (A > 0)
in the outer inviscid flow. The lower dashed line corresponds to the narrow-plate problem,
where the plate acts as a half-line source (A< 0) in the outer inviscid flow.

4. Numerical results
The computational scheme employs a uniformly spaced computational mesh of N1×

N2 points in the (ζ̄ , η̄)-plane where ζ̄ = ζ̄ (ζ̂ ), η̄= η̄(η), 06 ζ̂ 6 ζ̂∞ and 06η6η∞. The
two functions ζ̄ and η̄ are chosen to concentrate more nodal points near the boundary
η= 0 and in the gap/edge region ζ̂ 6 1 when viewed in the original (ζ̂ , η) plane. The
resulting system of 4N1N2+ 1 equations (the coefficient A, is an additional unknown)
is linearised about a current guess, and Newton iteration is applied to determine the
corrections. At each iteration the (sparse) linear system is solved using the SuperLU
library (Demmel et al. 1999). Typical computational values are ζ̂∞= 20, η∞= 60 and
N1 = N2 = 401, leading to approximately 6.4 × 105 degrees of freedom; all results
presented in figures below are independent of these computational parameters and the
spacing functions ζ̄ (ζ̂ ) and η̄(η).

Here we present results for both cases, of a narrow gap and a narrow plate. In the
former problem, the underlying base flow (in the absence of any short-scale forcing
by the presence of a narrow gap) is simply the two-dimensional Blasius solution; that
is, UB = F′(η), ΦB = F(η), ΨB = F′(η) and ΘB = F′′(η) in (3.2) where

F′′′ + FF′′ = 0, (4.1)

with F(0)= 0, F′(0)= 0 and F′(η∞)= 1. For the latter problem, the underlying base
flow (in the absence of the short-width plate) is merely UB = 1, ΦB = η, ΨB = 1 and
ΘB=0. These are the natural choices, but not the only possibilities, as we shall briefly
discuss in § 5 later.

Figure 3 shows the dependence of the coefficient A in (3.4) on the parameter ζ0,
which quantifies the width of the gap in figure 1(a) and the width of the plate in
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figure 1(b). As noted earlier (see also the Appendix), A is a measure of the mass
transfer induced in the cross-sectional plane. A gap in an otherwise infinite plate
acts as a sink in the cross-sectional plane, that is A> 0, whilst a narrow-plate in an
undisturbed uniform flow acts as a source, A < 0. In both cases the volumetric flux
induced by the gap/plate increases with the gap/plate width, ζ0, and our numerical
results suggest that A∼ ζ0 for large ζ0.

In figure 4 we show the flow field for both the narrow-gap (left) and narrow-plate
(right) geometries, for two representative values of ζ0= 4 and ζ0= 8. Figure 4(a,c,e,g)
show trajectories that are everywhere tangential to the in-plane velocity field (V,W)
as defined by (2.1b). Figure 4(b,d, f,h) show contours of the corresponding streamwise
velocity U. For clarity, figure 4 shows only a portion of the larger computational
domain (that with the most interesting flow structure).

A narrow gap in an otherwise semi-infinite plate leads to an associated half-line
sink behaviour (A> 0) in the far-field, as described by (3.4). However, the underlying
(Blasius) base flow leads to a uniform transpiration in the far-field. Away from the
plate, the Blasius solution dominates and the flow is still out of the boundary layer
and into the free stream, as shown in figure 4(a,c). However, within the boundary
layer the radial inflow induced by the narrow gap can dominate near to η = ζ̂ = 0,
which is also visible in these same figures. The edge of the plate acts as sink in
the cross-sectional plane, and the size of this region in the transverse (η) direction is
increased for increasing gap size ζ0. This increase in transverse displacement thickness
is clearly visible by comparing figure 4(a,c). As the gap widens, we also observe that
the streamwise flow essentially becomes uniform U ≈ 1 on the centreline ζ̂ = 0.

For the problem of a narrow plate, the reduction in streamwise velocity induced by
the no-slip constraint on the plate induces a source flow in the cross-sectional plane,
A< 0. Because the underlying base flow is the trivial uniform (streamwise) flow, this
source is clearly evident in the trajectories of figure 4(e,g). The off-plate streamwise
motion returns to U ≈ 1 rapidly, as seen in figure 4(f,h).

In both geometries we can examine the solution at the centreline/mid-plane, ζ̂ =
η= 0, for increasing values of the gap/plate width parameter ζ0. Figure 5(a) shows the
dependence of the streamwise velocity on ζ0 for the narrow-gap problem. As expected,
the streamwise velocity along the centreline U (ζ = 0, η = 0) rapidly approaches the
free-stream value of unity as the gap is widened. However, for increasing gap sizes,
the resulting flow near ζ = 0 is not simply the uniform flow found in the free stream
(as perhaps might be anticipated), as can be seen from the dependence of Ψ̃ζ̂ (ζ̂ =
0, η= 0). In terms of the cross-flow defined by (2.2):

W ∼ ζ√
2
(Ũ(ζ̂ = 0, η= 0)− Ψ̃ζ̂ (ζ̂ = 0, η= 0)) (4.2)

for small ζ . Therefore, a difference in Ũ and Ψ̃ζ̂ at ζ̂ = 0 corresponds to a locally
three-dimensional flow.

A similar situation occurs for the narrow-plate problem, as shown in figure 5(b).
For increasing plate width (that is, ζ0 increasing), the centreline streamwise shear (Uη

evaluated at ζ̂ = η= 0) does not approach that of a Blasius boundary layer. Similarly
the difference in the two components still points to a locally three-dimensional flow.

5. Alternative solutions
If we consider the example of a narrow gap in an otherwise semi-infinite flat

plate, the substitution (3.2) decomposes the solution into a (base flow) component
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FIGURE 4. Left-hand column is the narrow gap problem: (a) the cross-sectional (V,W)
velocity field for ζ0 = 4; (b) contours of downstream speed U for ζ0 = 4; (c) the cross-
sectional (V,W) velocity field for ζ0= 8; (d) contours of downstream speed U for ζ0= 8.
Right-hand column is the narrow plate problem: (e) the cross-sectional (V, W) velocity
field for ζ0 = 4; (f ) contours of downstream speed U for ζ0 = 4; (g) the cross-sectional
(V, W) velocity field for ζ0 = 8; (h) contours of downstream speed U for ζ0 = 8. Only
part of the full computational domain is shown.
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FIGURE 5. (a) The narrow-gap problem: evolution of the centreline mid-gap quantities U
and Ψ̃ζ for increasing gap width ζ0. (b) The narrow-plate problem: evolution of the centre
mid-plate shear quantities Ũη and Ψ̃ηζ for increasing gap width ζ0. In (b), the lower dashed
line indicates the shear coefficient for a two-dimensional Blasius boundary layer (0.4696),
whilst the upper dashed line shows the analogous three-dimensional alternative base flow
that is discussed in § 5.
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FIGURE 6. Results for the three-dimensional alternative to a Blasius base flow: the
cross-sectional (V,W) velocity field for (a) ζ0 = 4, and (b) ζ0 = 8. Only part of the full
computational domain is shown.

that solves the governing system in the absence of any gap, plus a correction that is
solely due to the short-scale spanwise forcing (i.e. the gap). In this case, the obvious
two-dimensional base flow solution is that due to Blasius, however, as noted above,
this is not the only solution. As discussed by Ridha (1992) and Dhanak & Duck
(1997), there is an alternative three-dimensional analogue to the classical Blasius
solution and the reader is referred to those papers for further details.

On choosing UB, ΦB, ΨB and ΘB in (3.2) to correspond to this three-dimensional
alternative to Blasius, the nature of the flow response in the narrow-gap problem
changes somewhat. In figure 6 we recompute solutions in the same manner and
present the vector field in the cross-sectional plane of constant x for ζ0 = 4, 8. The
qualitative features of figure 6(a) are to be compared with figure 4(a), as obtained
for the classical two-dimensional Blasius base flow with the same gap width ζ0 = 4;
similarly figure 6(b) can be compared with figure 4(c) for ζ0 = 8. Contours of the
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streamwise velocity are qualitatively similar to those of figure 4 and, in the interests
of brevity, we do not include them for this alternative solution.

These alternative states remain isolated from those of figure 4 for any ζ0, however
we note that the two states can be made to interact on the inclusion of a downstream
pressure gradient; we do not pursue this broader problem here.

Similar alternative (two-dimensional) base flows can be obtained for the narrow
plate problem. We do not pursue such states here on the basis that, even in the
absence of short-scale spanwise forcing, they have algebraic decay of vorticity into
the free stream; see for example Brown & Stewartson (1965) and Hewitt, Duck &
Stow (2002) for further discussion of such behaviour.

6. Discussion

In this work we have considered a class of boundary-layer flows that have a
short-scale spanwise forcing over a length scale ∆∗ ∼ (ν∗x∗/U∗∞)1/2 � 1. The exact
nature of this forcing is not significant to the qualitative conclusions of this work
(obviously quantitative details will vary). As specific examples we consider the flow
over a semi-infinite flat plate that contains a narrow-width gap, or a narrow-width
plate (as illustrated schematically in figure 1). In both cases the plate is taken to be
in an otherwise uniform free-stream flow with zero pressure gradient.

The salient feature of these flows is that when the gap width (or plate width),
and therefore ∆∗, is comparable to the transverse boundary-layer thickness δ∗ (at any
downstream position), viscous diffusion of momentum must be retained in both the
transverse and spanwise directions. It is of some significance to note that the same
general features can be found in many other (related) configurations, for example,
any short-scale spanwise variations in surface boundary conditions (via changes to
topography, transpiration or no-slip constraints). Some of these cases have appeared
in the literature in Duck et al. (2000) (a spanwise ridge of short scale) and Zuccher
et al. (2004) (a spanwise transpiration of short scale) and further examination of the
far-field boundary conditions imposed in such cases is perhaps warranted in the light
of our current results.

A short spanwise scale ridge is also considered by Neyland et al. (2008, (8.2.2))
in the context of surface roughness elements. We should note that the ‘longitudinally
parabolised’ equations that arise in region 3 of their work ultimately lead to our
governing system (2.4), even though their work is aimed at compressible flows.
Our results also offer support for their assumption that disturbances persist over a
transverse distance comparable to the roughness width.

The physical mechanism that is associated with these flows is an intuitive one.
Any forcing of a boundary layer on a spanwise length scale of ∆∗ will lead to a
modification of the transverse flow into (or out of) the exterior flow over this same
length scale. In the outer flow this additional transpiration from the boundary layer
will induce a correction, which on the O(1) spanwise length scale will appear as
a line source/sink centred at the position of the short-scale forcing. In the general
parabolic problem, the relative strength of this source/sink will be a function of the
downstream position, as ∆∗/δ∗ will in general vary downstream unless the forcing
preserves this ratio as herein. This mechanism would be of little significance if its
only influence was to contribute a high-order correction to the otherwise uniform flow
of the outer inviscid solution. However, near the location of the forcing the magnitude
of the source/sink flow must be included in the far-field boundary conditions for the
boundary-layer velocities (see Appendix). A failure to include the correct far-field
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behaviour leads to results that depend on arbitrary computational parameters owing
to an incorrect prediction of the mass flux in the cross-sectional domain (as shown
in figure 2).

We expect such flows to be of relevance in any situation where sufficiently
short-scale spanwise features exist within the boundary layer for a finite distance
in the downstream direction. However, they are also of interest in that they offer
non-trivial three-dimensional solutions of the corner boundary-layer equations that can
be smoothly connected to the well-known Blasius state (for the narrow gap problem)
as ζ0 → 0. In this context they may be a suitable test problem for future stability
analyses; as noted earlier, the stability properties of the full corner boundary-layer
problem are, as yet, to be fully established. In this regard, we should note that the
spatial stability of these flows to downstream developing perturbations is unknown,
similarly the parabolic marching of solutions (from a region near the leading edge)
in cases for which ∆∗/δ∗ is a function of downstream position remains a problem of
current interest. In the immediate vicinity of a leading edge, we should expect a full
Navier–Stokes region; indeed the predictions for the far-field behaviour discussed in
the Appendix rely on being away from this zone with x� y, z.

We conclude by noting that an obvious limit to consider is ∆∗/δ∗→∞, where the
spanwise length scale becomes long compared with the local transverse boundary-layer
thickness. In the context of our example problems herein, this limit is ζ0 � 1. As
mentioned in § 4, for the geometry of figure 1(a), as the gap width increases (ζ0→∞)
one may expect the in-gap flow (i.e. near ζ = 0) to approach the undisturbed state
(U= 1, Φ= η, Ψζ = 1, Θζ = 0). Likewise in the case of the finite-width plate, as ζ0→
∞, the corresponding assumption would be that, sufficiently close to ζ = 0, the flow
can be described by the classical Blasius equation. However, our numerical results
above suggest that these assumptions are naïve for gap widths or plate widths that
are of O(ζ0(ν

∗x∗/U∞)1/2) as ζ0 →∞. One might still expect these assumptions to
ultimately be appropriate for gap/plate sizes that are sufficiently large compared to the
transverse boundary-layer thickness, but if this is the case, the flow states must arise
beyond an intermediate regime.

As ζ0 increases, we find that A∼ ζ0 and there remains an O(1)-width region around
the plate-edge ζ = ζ0, in which spanwise diffusion is important. A similar O(1)-width
region develops around ζ = 0. In this O(1) centreline region the flow remains diffusive
in ζ and does not locally resemble known solutions of uniform flow (narrow gap), or
Blasius’ solution (narrow plate). In this context it is worth noting that the work of
Stewartson (1961) and Duck & Hewitt (2012) show that the flow in the vicinity of a
‘quarter-infinite’ plate has an unusual structure. This is because the outer flow for
the quarter-plate geometry induces a spanwise length scale of O(∆∗ log(U∗∞x∗/ν∗)),
which is long compared with the O(∆∗) scales considered in this work. Therefore,
the limit of ζ0� 1 in the current formulation remains distinct from the quarter-plate
formulation.

Appendix A. Matching to an irrotational outer flow
When there is a narrow gap in a flat plate (for example), the no-slip conditions are

replaced by transverse symmetry conditions in the gap. We therefore expect a relative
increase in the streamwise flow in this region. Such an increased downstream volume
flux must be replaced either laterally from the on-plate boundary layer, and/or from
the free-stream flow. An accurate description of this crucial feature is necessary to
obtain a boundary layer that is consistent with the correction to the outer potential
flow. Perhaps surprisingly, this induced volume flux must also be explicitly included
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in the solution process for the leading-order boundary-layer system when formulated
with short spanwise scales.

In the established manner, Van Dyke (1964), in the outer (irrotational) inviscid
solution, we seek a dimensionless velocity potential φ(x, y, z) where φ and (x, y, z)
are made dimensionless with respect to some length scale L∗ and the free-stream
velocity U∗∞. The velocity potential must satisfy Laplace’s equation in the fluid
subject to a weak transverse flow induced by the boundary layer on y= 0:

∂φ

∂y

∣∣∣∣
y→0,x>0

= Re−1/2x−1/2 (vB + v̄(ζ , η→∞)) , (A 1)

where Re = U∗∞L∗/ν∗. For the geometry of figure 1(a), vB is the usual (constant)
transpiration coefficient associated with a two-dimensional (Blasius) boundary layer on
a semi-infinite plate. For the geometry of figure 1(b) there is no displacement in the
absence of the narrow plate and therefore vB= 0. The term v̄ represents an additional
(non-constant) transverse velocity induced over the short spanwise scales. At this stage
v̄ is unknown, but its general form is constrained by the matching process, as we shall
discuss below.

We can decompose the (outer) velocity potential solution into a uniform-flow
component, a two-dimensional correction, and a further contribution induced by the
short spanwise scales:

φ(x, y, z)= x+ φB(x, y)+ φ̄(x, y, z), (A 2)

where the subscript B indicates the two-dimensional outer solution in the absence of
any short-scale spanwise forcing within the boundary layer. From the above, obviously
φB and vB are identically zero in the case of the narrow-plate problem, but they are
non-zero in the narrow-gap problem.

Our interest lies with the contribution φ̄, for which a Green’s function solution for
the induced outer flow follows by standard methods:

φ̄ =− 1
2π

∫ ∞
X=0

∫ ∞
Z=−∞

Re−1/2x−1/2 v̄(ζ̄ , η→∞)√
(x− X)2 + y2 + (z− Z)2

dX dZ, (A 3)

where ζ̄ =ZRe1/2/(2x)1/2, which is equivalent to (2.1a), but for the integration variable.
As the induced transpiration v̄ is a function of the short spanwise scale ζ , on the
longer outer scale this appears as a volume flux from the half-line x > 0, y = z = 0
and the above integral can be reduced to a leading-order expression:

φ̄ ∼− M

π
√

2Re

∫ ∞
X=0

1√
(x− X)2 + y2 + z2

dX, (A 4)

where M is a dimensionless measure of the volumetric out/in-flow of the line
source/sink,

M =
∫ ∞
ζ̄=0

v̄(ζ̄ , η→∞) dζ̄ . (A 5)

Evaluation of the integral (A 4) yields the leading-order velocity potential for the
correction due to the presence of the small-scale spanwise features,

φ̄ ∼ M

π
√

2Re
log
(√

x2 + y2 + z2 − x
)
; (A 6)

which is merely the velocity potential solution for a semi-infinite line source/sink.
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A computation of the velocity components in the cross-sectional plane now
leads to

∂φ

∂y
∼ ∂φB

∂y
+ M
√

2
πRe

y
y2 + z2

, (A 7a)

∂φ

∂z
∼ M
√

2
πRe

z
y2 + z2

, (A 7b)

for y, z� x. The terms proportional to Re−1 are (typically) of higher order. However,
on approaching the short-scale region of the gap/plate near y = z = 0, they form a
(leading-order) far-field contribution to the boundary layer when y, z= O(x1/2Re−1/2),
which are the relevant scales of § 2. In this formulation the volumetric flux M is
unknown a priori and must be determined in conjunction with the leading-order
viscous boundary layer, and as such there is an interaction between the inviscid outer
flow and the boundary layer.
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