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We present experimental and theoretical results for the adjustment of a fluid
(homogeneous or linearly stratified), which is initially rotating as a solid body with
angular frequency Ω − 1Ω , to a nonlinear increase 1Ω in the angular frequency
of all bounding surfaces. The fluid is contained in a cylinder of square cross-section
which is aligned centrally along the rotation axis, and we focus on the O(Ro−1Ω−1)

time scale, where Ro = 1Ω/Ω is the Rossby number. The flow development is
shown to be dominated by unsteady separation of a viscous sidewall layer, leading
to an eruption of vorticity that becomes trapped in the four vertical corners of the
container. The longer-time evolution on the standard ‘spin-up’ time scale, E−1/2Ω−1

(where E is the associated Ekman number), has been described in detail for this
geometry by Foster & Munro (J. Fluid Mech., vol. 712, 2012, pp. 7–40), but only
for small changes in the container’s rotation rate (i.e. Ro� 1). In the linear case, for
Ro� E1/2� 1, there is no sidewall separation. In the present investigation we focus
on the fully nonlinear problem, Ro=O(1), for which the sidewall viscous layers are
Prandtl boundary layers and (somewhat unusually) periodic around the container’s
circumference. Some care is required in the corners of the container, but we show
that the sidewall boundary layer breaks down (separates) shortly after an impulsive
change in rotation rate. These theoretical boundary-layer results are compared with
two-dimensional Navier–Stokes results which capture the eruption of vorticity, and
these are in turn compared to laboratory observations and data. The experiments show
that when the Burger number, S = (N/Ω)2 (where N is the buoyancy frequency), is
relatively large – corresponding to a strongly stratified fluid – the flow remains
(horizontally) two-dimensional on the O(Ro−1Ω−1) time scale, and good quantitative
predictions can be made by a two-dimensional theory. As S was reduced in the
experiments, three-dimensional effects were observed to become important in the
core of each corner vortex, on this time scale, but only after the breakdown of the
sidewall layers.
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1. Introduction
The term spin-up is most commonly used to describe how a fluid adjusts from

an initial to a new state of solid-body rotation, due to an increase in the rotation
speed of the fluid’s confining boundaries. Many previous studies have focused on the
linear spin-up of a homogeneous fluid in a closed circular cylinder. By ‘linear’ we
mean that the Rossby number Ro = 1Ω/Ω is small, where Ω − 1Ω and Ω are
the initial and new angular frequencies of the cylinder, respectively. In this case we
know that the flow is axisymmetric and the fluid is spun up by a meridional-plane
secondary circulation in the fluid’s interior, driven by the Ekman boundary layers
at the cylinder’s base and lid (Greenspan & Howard 1963; Benton & Clark 1974;
Duck & Foster 2001). This secondary circulation stretches the background vortex and
gradually draws fluid radially inwards, which by conservation of angular momentum
must acquire greater angular velocity. As a result, the fluid adjusts from the old to the
new rotation speed exponentially, on the time scale E−1/2Ω−1, where E = ν/ΩL2 is
the Ekman number, with ν being the fluid’s kinematic viscosity and L a characteristic
length scale, such as the fluid’s depth or a measure of the container size. In the
vast majority of practical applications E� 1, and so the spin-up time scale is large
compared to the formation time of the Ekman layers, which is of order Ω−1, but much
smaller than the viscous diffusion time scale, E−1Ω−1. The spin-up time scale was
derived theoretically for linear spin-up (Greenspan & Howard 1963); however, it has
been shown to apply also to the nonlinear regime – where Ro is not small – and to
the limiting case of spin-up from rest, Ro= 1 (Weidman 1976).

The presence of a stable density stratification further complicates the spin-up
process. This problem was studied by Walin (1969), who described the linear spin-up
(Ro� 1) of a linearly stratified fluid in a closed circular cylinder. In this case, the
stable density field inhibits vertical motion. In particular, Walin (1969) showed that
the radial Ekman-layer flux, on reaching the perimeter of the base (and lid), cannot
be transported vertically within sidewall shear layers – as is the case in homogeneous
spin-up (Stewartson 1957) – but instead erupts into the inviscid interior region. As a
result, there is no meridional circulation throughout the fluid’s interior. Instead, the
spin-up process penetrates only to a height (depth) of order S−1/2L, where S= (N/Ω)2
is the Burger number and N the fluid’s buoyancy frequency. Consequently, the limiting
steady state on the spin-up time scale is a spatially non-uniform rotation, with the
degree of non-uniformity governed by the magnitude of S. The final spun-up state
is approached only on the much longer viscous time scale, E−1Ω−1. More recent
investigations of analogous nonlinear problems can be found in Thomas & Rhines
(2002), Smirnov et al. (2005) and Munro, Foster & Davies (2010).

The stratified spin-up process is further complicated by the presence of boundaries
that are sloped at an angle to the axis of rotation, in which case the near-boundary
flow is a buoyancy-inhibited Ekman layer. A linearised description of such flows
was presented by MacCready & Rhines (1991), while a nonlinear description of the
near-boundary flow was presented by Duck, Foster & Hewitt (1997) in the context
of a conical container. The nonlinear theory shows that the near-wall boundary layer
typically thickens with time, although at sufficiently low levels of density stratification
steady-state flow or boundary-layer breakdown is possible. Experimental comparisons
for such buoyancy-inhibited layers were presented by Hewitt et al. (1999), again for
conical containers and linear stratification. Even for the simpler case of two-layer
stratification, if the density interface intersects sloping boundaries, an algebraic (in
time) linear spin-up response can be achieved, as described by Hewitt, Foster &
Davies (2001).
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Van Heijst (1989) was the first to study spin-up in non-axisymmetric containers
with bounding walls that were either perpendicular or parallel to the axis of rotation.
Laboratory experiments were used to observe the spin-up from rest (Ro = 1) of a
homogeneous fluid (with a free surface) in a variety of tank geometries, including
a semicircular cylinder and an annular cylinder with a radial barrier. The follow-up
studies by van Heijst, Davies & Davis (1990) and van de Konijnenberg & van Heijst
(1997) used containers with rectangular cross-section and both homogeneous and
linearly stratified fluids. At early times, the motion relative to a coordinate frame
that rotates with the container is a horizontal, anticyclonic flow that completely fills
the interior domain. A feature of such flows is the presence of horizontal pressure
gradients along the container’s sidewalls, which led to the conjecture that unsteady
flow separation may occur. Shortly after the rotation starts, vorticity generated in the
sidewall boundary layers is advected into the fluid’s interior, forming cyclonic line
vortices that interact with, and break up, the initial starting flow. The background
rotation eventually stabilises the flow into an organised array of alternately cyclonic
and anticyclonic vortices (or cells), whose number and size are determined by
the container’s geometry and horizontal aspect ratio. This flow pattern persists but
gradually decays on the E−1/2Ω−1 time scale due to the drag associated with the
Ekman layer at the base of each cell.

More recently, Foster & Munro (2012) reported a theoretical and experimental study
of the linear spin-up (Ro� 1) of a linearly stratified fluid in a closed cylinder with
square cross-section. Their experimental results showed that the detachment of the
sidewall boundary layers results in the formation of an equal-sized cyclonic line vortex
in each of the cylinder’s vertical corners. The two-dimensional anticyclonic starting
flow, which initially fills the flow domain, is deformed by the formation of the corner
vortices but throughout remains dominant and centred about the cylinder’s vertical axis.
The weaker cyclonic corner vortices remain confined to the corner regions. This is in
contrast to a rectangular domain (van Heijst et al. 1990), where the corner vortices
form asymmetrically, with large vortices developing in the corner regions downstream
of the two long sides, which grow to a size comparable with the container’s width
and then interact with the initial starting-flow cell.

Foster & Munro (2012) derived an asymptotic result to describe how the starting
flow in a square cylinder is spun up on the time scale E−1/2Ω−1. Their result
accounted for two effects. Firstly, Ekman compatibility conditions were applied in
combination with a condition for the singular Ekman-layer eruptions to account for
how the interior flow is spun up by the drag associated with the Ekman layers at
the cylinder’s base and lid. Secondly, they showed that on the spin-up time scale the
boundary layers for the horizontal velocity components tangential to each sidewall
take the form of inwardly growing Rayleigh layers. The composite solution combining
these elements was shown to exhibit an excellent level of agreement with experimental
data. Notably, this asymptotic result – valid for Ro� E1/2 – does not account for
the corner-cell formation. However, Foster & Munro (2012) showed that for times
of order Ro−1Ω−1 the sidewall shear layers are conventional Prandtl boundary layers,
which led them to the conjecture that the corner cells form on this time scale and are
the result of a finite-time singularity in the (nonlinear) Prandtl equations in the region
of adverse pressure gradient upstream of each corner. Although no formal analysis
of this singularity was attempted, evidence from their experimental observations did
support this conjecture, and confirmed that the formation of the corner cells was
complete for times of order Ro−1Ω−1.

Here, we also consider spin-up in a square cylinder. Our attention is focused on
reporting, for the first time, a detailed experimental and theoretical description of how
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axial vortices form in the cylinder’s vertical corner regions on the Ro−1Ω−1 time scale,
and how their formation is affected by density stratification of the fluid. The sidewall
boundary-layer equations derived by Foster & Munro (2012) are reformulated and
analysed to investigate the issue of unsteady separation; the theoretical predictions and
computations are compared with experimental observations. Here we do not consider
the longer spin-up time scale, and so the Ekman number has less relevance. Instead,
the theoretical analysis reported here shows that the key parameter for the sidewall
boundary layers, on the Ro−1Ω−1 time scale, is the Reynolds number, Re=1ΩL2/ν=
Ro/E, where L denotes the cylinder’s width. Foster & Munro (2012) studied stratified,
linear spin-up for values of Ro between 0.01 and 0.1 and S in the range 0.2–26, with
Re between 970 and 2800. The corner regions observed in their experiments had a
simple structure, consisting of a single cyclonic line vortex extending over the fluid’s
depth. In this paper we consider the case where Re = O(104), with S ranging from
0 to 100. We will show that this case gives rise to the formation of multiple line
vortices in each corner region, both cyclonic and anticyclonic. Van de Konijnenberg &
van Heijst (1997) reported two experiments on spin-up from rest in a square cylinder
with Re=O(105), and in both cases the corner vortices were observed to become fully
turbulent shortly after formation. Here, attention has been restricted to Re . 40 000,
which for our configuration meant that the vortices that formed in the corner regions
remained laminar. The theoretical work reported here applies to the general case of
Ro6 1. For simplicity, however, we present experimental data only for the case where
Ro= 1 (spin-up from rest). Experiments were performed for Ro< 1, but no significant
differences were observed.

The paper is structured as follows. In § 2 we describe the experimental set-up
and observations. In § 3 we present the theoretical analysis of the flow, describing
the evolution of the unsteady sidewall boundary layers. Section 3 also presents the
results of two-dimensional Navier–Stokes computations; these are used to reinforce
the asymptotic analysis over time scales of O(Ω−1), which remain short compared to
the time taken for spin-up of the contained fluid. Some final remarks and conclusions
are given in § 4. Some theoretical justification for the two-dimensionality assumption
made in the computations is given in appendix A.

2. Experiments
2.1. Apparatus and flow visualisation

The experimental configuration is shown in figure 1. Each experiment was performed
in a transparent square cylinder (of width L= 38 cm and height H= 51 cm) mounted
on a variable-speed turntable with its vertical axis aligned with the rotation axis of
the table (see figure 1). The cylinder was filled with either (i) a uniform-density
salt-water solution or (ii) a linearly stratified salt-water solution with a buoyancy
frequency (N) of 0.30 or 0.83 Hz. In both cases, the salt used was NaCl. The linear
density stratification was set up, and the corresponding density gradient measured,
using conventional techniques similar to those described by Economidou & Hunt
(2009). Once filled, the cylinder was sealed with a transparent rigid lid, which was
fitted in order to completely displace the fluid’s free surface so that no air pockets
would be trapped on the lid’s underside. The sealed cylinder was left to stand for
several hours to allow the fluid to reach a quiescent state. The experiment was then
initiated (at time t∗ = 0) by smoothly increasing the table’s rotation rate from rest to
the final angular frequency Ω , which was thereafter held fixed for the experiment’s
duration. The relative variability in Ω was always small and less than 3 %. In all
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FIGURE 1. A sketch of the basic experimental set-up. The co-rotating coordinate system
(x∗, y∗, z∗) is also shown (with ẑ denoting the unit z direction); the cylinder’s rotation was
in the clockwise direction.

cases the ramp time (i.e. the period over which the table’s rotation rate was increased)
was between 3 and 4 s, depending on the magnitude of Ω .

The flow (relative to a frame that rotates with the container) was visualised and
measured using particle streaklines and particle image velocimetry (PIV) (Dalziel
2006). To facilitate the use of these techniques, small tracer particles were added
to the fluid once the cylinder had been filled (and before fitting the lid). When
added to the uniform-density fluid, the particles were made neutrally buoyant by
dissolving sufficient salt in the water to match the mean density of the particles
(i.e. 1.027 g cm−3); the fluid was thoroughly stirred to ensure that the particles were
uniformly distributed. When added to the linearly stratified fluid, the particles were
allowed to settle freely into suspension in a narrow band about their mean buoyancy
level within the fluid’s density stratification. In both cases, a thin (co-rotating)
horizontal light sheet was directed through the cylinder’s sidewall, at a height z0
above the cylinder’s base (see figure 1), to illuminate the suspended particles located
within this horizontal plane. (For the linearly stratified fluid, z0 corresponded to the
neutral buoyancy level of the particles.) Experiments were performed with z0/H in
the range 0.2–0.6. The horizontal light sheet was produced using two xenon arc
lamps mounted inside a light box, which was designed to emit light only through a
narrow horizontal slit in its front panel. The light box was mounted on the turntable
with the light sheet positioned at the desired height z0.

Following the onset of the table’s rotation (at time t∗= 0), the relative motion of the
illuminated particles was captured using a co-rotating digital video camera mounted
on the turntable and positioned to point vertically down into the cylinder’s interior
(see figure 1). The images were recorded at a frame rate of 15 Hz and were processed
at the end of each experiment relative to the co-rotating coordinates, (x∗, y∗, z∗), which
are shown in figure 1. Firstly, streakline images of the tracer particles were generated
by taking time exposures of consecutive images (typically over a 2 or 3 s duration),
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FIGURE 2. (Colour online) Streakline images showing key stages during the evolution
of the relative flow. The data shown are from experiment A (Ro = 1, Re = 12 000, S =
100, Ω = 0.083 rad s−1, z0/H = 0.26). The exposure time for each image was 3 s, and
the corresponding dimensionless times t =Ωt∗ are (a) 0.33, (b) 1.8, (c) 3.3 and (d) 7.8
(each of these times corresponds to the middle of the exposure). The cyclonic direction is
clockwise, so the relative starting flow in (a) is in the anticlockwise direction, as indicated
by the arrows. Note that t= 2π corresponds to the first rotation period of the cylinder.

examples of which are shown in figure 2. This exposure time is small compared to
the time it takes for the cylinder to complete one revolution, and so the streaklines
provide useful estimates of the instantaneous streamlines. Secondly, measurements
of the horizontal velocity components (u∗, v∗) in the horizontal plane z∗ = z0 were
obtained by applying a standard PIV algorithm (Dalziel 2006) to consecutive images.

All experiments reported here were performed from an initial state of rest (Ro= 1),
with Re ranging from 8000 to 41 000 and with the Burger number S = (N/Ω)2
between 0 and 100, where S = 0 corresponds to uniform-density fluid (i.e. N = 0).
In table 1, the key parameters are listed for each of the 11 experiments, henceforth
labelled A to K. Throughout, E1/2 = O(10−2) or less, so the standard spin-up time
scale (E−1/2Ω−1) was always large compared to the time scale associated with the
formation of the corner vortices (Ro−1Ω−1). For the case considered here of salt
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Experiment Ω (rad s−1) S Re z0/H

A 0.083 100 12 000 0.26
B 0.130 44 18 000 0.26
C 0.190 20 27 000 0.26
D 0.070 18 10 000 0.31
E 0.110 7.6 16 000 0.31
F 0.240 1.6 34 000 0.43
G 0.280 0 41 000 0.51
H 0.180 0 27 000 0.46
I 0.140 0 20 000 0.29
J 0.091 0 13 000 0.29
K 0.055 0 8 000 0.60

TABLE 1. A list of the important experimental parameters; in all cases Ro= 1.

(NaCl) dissolved in water, the Schmidt number was Sc ≈ 670 (Munro et al. 2010);
that is, the molecular diffusion of salinity in the stratified-fluid experiments was not
significant. Finally, we note that the direction of the turntable’s rotation was clockwise
in all experiments, so we denote the final angular frequency vector of the cylinder
by �=−Ω ẑ (with Ω > 0), where ẑ is the unit vector in the z direction.

2.2. Observations
Here we introduce the dimensionless time, coordinates and corresponding velocity
components, defined as

t=Ωt∗, (x, y, z)= L−1(x∗, y∗, z∗), (u, v,w)= (LΩ)−1(u∗, v∗,w∗). (2.1a−c)

The streakline images in figure 2 (Ro=1, Re=12 000, S=100) show the key stages
observed as the vortices form in the vertical corner regions of the cylinder. We will
now focus attention on this formation period, which corresponds (approximately) to
the first rotation period of the cylinder.

A more detailed discussion of the flow response will be presented in § 2.2.2, but we
begin with an initial description of the generic features of the flow, in the context of
spin-up from rest. Once the cylinder is set in rotation, the starting flow is immediately
established. The starting flow is inviscid and two-dimensional, and takes the form
of an anticyclonic rotation that entirely fills the cylinder’s interior, with closed-path
streamlines (figure 2a). Subsequent to this, the boundary layers that form along each
sidewall appear to show a breakdown upstream of each corner region, where the
sidewall pressure gradient is adverse; at such a ‘breakdown’ the boundary layer is no
longer a thin region attached to the sidewall. As a result, cyclonic vorticity is ejected
from the sidewall boundary layers and advected by the interior flow, accumulating
in the adjacent downstream corner region and forming a cyclonic axial vortex that
extends over the cylinder’s depth. A vortex forms simultaneously in each of the four
corner regions of the cylinder cross-section, such that the flow pattern is invariant
under rotation by π/2, as shown in figure 2(b). As these corner vortices develop,
additional anticyclonic vortices are produced adjacent to the boundary, which interact
with and deform the original corner vortices (see figure 2c), eventually leading to the
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formation of three alternately cyclonic and anticyclonic axial vortices in each of the
four vertical corner regions of the cylinder (figure 2d).

The key stages outlined above were generally observed in all experiments reported
here. The notable exceptions were the experiments performed at the higher range of
values of Re (between 37 000 and 40 000); in these cases the corner regions were
turbulent shortly after formation. We also highlight that the experiment shown in
figure 2 corresponds to large Burger number (i.e. S = 100). In this case the fluid’s
density stratification is sufficiently strong to inhibit vertical motions, and so the
flow remains essentially two-dimensional. This was not the case for experiments
at intermediate and small S, and in particular at S = 0, where vertical motion was
observed in the corner regions shortly after their formation. Hence, we will now
describe in detail (see § 2.2.2 below) the flow’s evolution through the key stages
outlined above, and discuss how this evolution changes with S. To begin, however,
we briefly summarise the key features of the early-time starting flow (shown in
figure 2a); although equivalent to the starting flow described previously by van Heijst
et al. (1990) and Foster & Munro (2012), the details are briefly repeated here as they
will be needed later in § 3 in our analysis of the sidewall boundary layers.

2.2.1. The inviscid two-dimensional starting flow
The cylinder starts rotating at t = 0, giving rise to the starting flow (relative to a

frame that rotates with the container) shown in figure 2(a), which is an anticyclonic
rotation that entirely fills the cylinder’s interior. At this early time, the boundary layers
along the lid, base and sidewalls are still forming and so have had no discernible
effect on the interior flow. In particular, the Ekman suction is weak (i.e. O(t1/2E1/2))
at early times and so there is effectively no vertical motion (w = 0). The starting
flow is therefore largely inviscid and two-dimensional and conserves the total vorticity
of the initial condition, which, relative to the co-rotating reference frame, is given
dimensionally by 2Ω ẑ. Under these conditions, and following the approach used for
other non-axisymmetric geometries (van Heijst 1989; van Heijst et al. 1990), the flow
within the interior can be represented by a two-dimensional streamfunction, ψ(x, y),
related to the horizontal velocity components by (u, v, 0)=−ẑ×∇ψ = (ψy,−ψx, 0).
Conservation of vorticity requires that ψ satisfy

∇2ψ =−2, (2.2)

and with the boundary layers along each sidewall neglected, the relevant boundary
conditions for (2.2) are that ψ = 0 at x = 0, 1 and at y = 0, 1. The corresponding
solution can be written as

ψ = x(1− x)− 8
π3

∞∑
n=1

{
sinh[π(2n− 1)y] + sinh[π(2n− 1)(1− y)]

(2n− 1)3 sinh[π(2n− 1)]
}

sin[π(2n− 1)x].
(2.3)

Figure 3 shows a qualitative comparison between the streakline data in figure 2(a) and
a sample of contours generated from (2.3), together with a quantitative comparison
between measured and theoretical velocities (see caption for details).

2.2.2. Formation of the corner regions
The corner regions form during the first rotation period of the cylinder, and the key

stages of the flow’s development are shown in figure 2. During this period, the flow
is the same in the four corner regions, so we now describe this formation sequence
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FIGURE 3. (Colour online) (a) The solid lines show contours of the streamfunction (2.3)
superimposed on the streakline data shown previously in figure 2(a). (b) The solid line
shows the velocity component v = −ψx, evaluated using (2.3) along the symmetry axis
y= 1/2, compared with corresponding experimental data (◦); the experimental parameters
are Ro= 1, Re= 12 000, S= 100, Ω = 0.083 rad s−1 and z0/H= 0.26 (experiment A), and
the data are shown for t=Ωt∗ = 0.33.

using the streakline images in figure 4, which show a close-up view of the quadrant
06 x6 0.5 and 06 y6 0.5, focused on the corner at (x, y)= (0, 0). Note that the data
in figures 2 and 4 are from experiment A (Ro= 1, Re= 12 000, S= 100, z0/H= 0.26).

Once the cylinder is set in rotation, the two-dimensional starting flow is quickly
established. Shortly after this, as seen in figure 4(a,b), there is visual evidence to
suggest that the boundary layer that has formed on the (x=0) sidewall upstream of the
corner is reversing, in the region where the tangential horizontal pressure gradient is
adverse. Cyclonic vorticity generated in the boundary layer is advected into the corner,
where it forms an axial vortex (figure 4a,b) which extends over the tank’s depth. (We
henceforth refer to this cyclonic corner vortex as the ‘primary’ vortex.) At the time
shown in figure 4(a), the streamline at the perimeter of the starting flow has detached
from the x= 0 sidewall at y≈ 0.25 and reattached to the adjacent y= 0 sidewall at
x ≈ 0.05. As more cyclonic vorticity is advected into the corner region, the primary
vortex grows in cross-section and the detachment (reattachment) point moves upstream
(downstream) along the sidewall (figure 4b,c).

The continued development of the primary vortex results in the formation of two
distinct ‘secondary’ vortices. In figure 4(c), the first of these secondary vortices can
be seen adjacent to the x = 0 sidewall, with its axis at y ≈ 0.2. The second vortex,
which forms shortly after, is situated in the region between the corner’s apex and the
primary vortex, and can be seen in figure 4(d). As with the primary vortex, the axes
of these secondary vortices extend over the cylinder’s depth. As more anticyclonic
vorticity is supplied to the secondary vortices, they grow in cross-section. Notably,
the growth of the upstream secondary vortex (at y ≈ 0.2 in figure 4c) deforms and
then pinches the primary vortex, which eventually divides (figure 4d). Moreover, as the
secondary vortices grow, they eventually merge to form a single anticyclonic vortex.
The merging event is shown in figure 4(e), and the single merged anticyclonic vortex
is shown in figure 4(f ), occupying the region adjacent to the corner’s apex and flanked
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FIGURE 4. (Colour online) Streakline images showing the formation of the corner regions
in experiment A, where Ro= 1, Re= 12 000, S= 100, Ω = 0.083 rad s−1 and z0/H= 0.26.
The dimensionless times t = Ωt∗ at which the images were taken are (a) 0.83, (b) 1.1,
(c) 2.6, (d) 3.2, (e) 6.6 and (f ) 7.8. Note that t = 2π corresponds to the first rotation
period of the turntable. The exposure time for each image was 3 s. The black arrow in
(a) has been included to show the direction of the anticyclonic interior flow.
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on either side by the two divided components of the (cyclonic) primary vortex. At this
stage, the four corner regions have deformed the interior starting flow, which now has
a near-circular perimeter (a feature best illustrated by figure 2d). As a result, there is
now very little contact between the interior anticyclone and the container’s sidewalls,
so the supply of cyclonic vorticity to the corners is significantly reduced, and hence
there is little further growth of the corner regions.

The data in figures 2 and 4 are for the case where S is large, with Re at the lower
end of the range considered. In this limit – corresponding to when the fluid’s density
stratification is ‘strong’ – the flow within the central core and the corner regions
remains two-dimensional throughout the formation period. That is, in the absence
of vertical motion, the illuminated tracer particles are advected along horizontal
trajectories and so remain within the horizontal light sheet, resulting in continuous,
well-defined streaklines. This is in contrast to the experiments performed with no
density stratification, for S = 0, which over the full range of Re considered here
were characterised by a period of three-dimensional motion developing in the corner
regions. This is best illustrated by comparing figure 4 with the streakline data in
figure 5 from an experiment performed under similar conditions (Ro= 1, Re= 13 000,
z0/H = 0.29) but with S = 0. The key observation to highlight is that during the
initial period 0 6 t 6 3.1 (i.e. the first half-rotation of the cylinder), the streakline
patterns in figure 5(a–d) are identical to those in figure 4(a–d); that is, even at S= 0,
during this initial period the flow in both the central core and the corner region is
two-dimensional. However, it is evident from figure 5(e,f ) that shortly after this period,
the flow in the corner region becomes three-dimensional, with the tracer particles now
moving vertically through, as well as in, the light sheet: the structure of the larger
component of the divided primary vortex remains largely visible, but the structure of
the weaker corner vortices is now unclear, because within these vortices the vertical
and horizontal velocity components are comparable. (Note that the anticyclonic flow
within the central core remains two-dimensional throughout.) For the experiment
shown in figure 5, the three-dimensional motion was first evident at time t ≈ 4.
However, at time t= 10, the vertical motion in the corner region had ceased, and the
flow was again two-dimensional throughout. We also note that in figure 5(e,f ), the
flow is three-dimensional but not turbulent. It was only in experiments performed at
the higher-range values of Re (above 37 000) that the flow within the corner regions
showed signs of transitioning to a fully turbulent state.

Most of the experiments reported here exhibited this period of three-dimensional
motion in the corner regions. It was only in experiments at large S, or at intermediate
values of S with Re at the lower end of the range considered, that the fluid’s density
stratification was strong enough to inhibit vertical motion, and in these cases the
flow remained two-dimensional throughout the formation period. A key point worth
highlighting, however, is that in all the experiments, for all S considered, the flow was
always two-dimensional during the first half-rotation period (i.e. 0 6 t 6 π) and the
corner regions start forming during this initial period. In § 3 below, we introduce the
theoretical analysis. In particular, the equations for the sidewall boundary layers are
formulated, where the key assumption used is that, prior to breakdown, the sidewall
boundary layers are two-dimensional. The experimental data presented above provides
clear justification for this assumption.

It is also worth noting that the observations above have been confirmed by repeating
a number of the experiments without the horizontal light sheet, but instead with the
tracer particles illuminated uniformly. The particle motion was recorded with the
digital camera pointing horizontally through the side of the cylinder, and focused
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FIGURE 5. (Colour online) Streakline images showing the development of the corner
regions in experiment J, where Ro = 1, Re = 13 000, S = 0, Ω = 0.091 rad s−1 and
z0/H=0.29. The dimensionless times t=Ωt∗ at which the images were taken are (a) 0.64,
(b) 0.91, (c) 2.0, (d) 3.1, (e) 6.4 and (f ) 7.7. Note that t = 2π corresponds to the first
rotation period of the turntable. The exposure time for each image was 3 s. The black
arrow in (a) has been included to show the direction of the anticyclonic interior flow.
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on one of the corner regions. In particular, these recordings confirmed the initial
two-dimensionality of the flow, the columnar structure of the corner vortices and the
eventual onset of vertical motions in the corner regions (when S is not large).

3. A theoretical and numerical description
The flow configuration has been discussed already and is shown in figure 1. We

now present the theoretical analysis for the general case where the cylinder and fluid
are initially in a state of solid rotation with angular frequency Ω −1Ω , and then at
time t∗ = 0 the cylinder’s rotation rate is increased instantaneously to Ω . (The case
of spin-up from rest corresponds to Ω = 1Ω .) To model the system, we make the
usual Boussinesq approximation for the inclusion of density stratification, and write
the equations of motion in a rotating frame of reference. Assuming the Froude number
Fr=Ω2L/g to be small (in the experiments Fr 6 0.003), we neglect any modification
of apparent gravity due to centrifugal acceleration and decompose the pressure and
density into several components, so that they can be written relative to the rotating
coordinate system as

ρ∗(x∗, t∗)= ρ` + ρ∗s (z∗)+ ρ∗(x∗, t∗), (3.1a)
p∗(x∗, t∗)= p∗s (z

∗)+ p∗(x∗, t∗), (3.1b)

where ρ∗s and p∗s are the contributions associated with the background stratification, ρ`
is a constant reference density (taken here to be the initial density at the container lid)
and ρ∗ and p∗ are the perturbations arising due to the increase in rotation rate of the
cylinder. It is assumed throughout that ρ∗� ρ∗s , ρ`.

Following Foster & Munro (2012), we introduce the non-dimensional variables

x= x∗

L
, t=Ωt∗, u= u∗

1ΩL
, ρ = gρ∗

ρ`Ω1ΩL
, p= p∗

ρ`Ω1ΩL2
. (3.2a−e)

The governing equations of motion are therefore reduced to

∇ · u= 0, (3.3a)
ut + Ro(u · ∇)u+ 2(ẑ× u)+ ρ ẑ+∇p= E∇2u, (3.3b)

ρt + Ro(u · ∇)ρ − Sw= (E/σ)∇2ρ, (3.3c)

where the dimensionless Rossby (Ro), Ekman (E), Burger (S) and Schmidt (σ )
numbers are, as noted above, defined by

Ro= 1Ω
Ω

, E= ν

ΩL2
= Ro

Re
, S=

(
N
Ω

)2

, σ = ν
κ
. (3.4a−d)

We assume that the buoyancy frequency N remains constant throughout. The case
where the fluid has uniform density is governed by (3.3) with ρ = 0 and S= 0. The
case of spin-up from rest corresponds to Ro= 1.

The initial and boundary conditions for (3.3) are

u= ẑ× (x− x0)=
(

1
2 − y, x− 1

2 , 0
)
, ρ = 0 for t= 0, x ∈D, (3.5a)

u= 0,
∂ρ

∂n
= 0 for x ∈ ∂D, t> 0, (3.5b)

where x0 denotes the position vector of the centre of the cylinder base, D ={(x, y, z) :
x, y ∈ [0, 1], z ∈ [0, h]} is the flow domain, h= H/L is the cylinder’s height-to-width
ratio, ∂D is the domain boundary and n is used to represent the normal direction at
each boundary.
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3.1. The two-dimensional response over the O(Ro−1Ω−1) time scale
Recent work of Foster & Munro (2012) has shown that there is no eddy generation
in the sidewall region (adjacent to ∂Dv, which denotes the vertical parts of ∂D) for
sufficiently small changes in rotation rate. The asymptotic restriction for this scenario
is Ro � E1/2, and in such cases the sidewall region remains a growing Rayleigh
layer on the spin-up time scale. Furthermore, when Ro=O(E1/2), corner eddies were
observed on the spin-up time scale E−1/2Ω−1, and it was speculated that their origin
lay in a breakdown or an eruption of a viscous boundary layer, owing to an adverse
pressure gradient imposed via the interior starting flow. At these (and indeed larger)
Rossby numbers, Foster & Munro (2012) showed that the sidewall region requires a
solution of the (nonlinear) Prandtl boundary-layer equations, which certainly allows
for the possibility of a breakdown. In the linear regime, the influence of the top and
bottom Ekman layers remains important to the core flow structure, but fortunately, in
the nonlinear regime, Ekman suction is not important to the leading-order dynamics.
As a consequence, for Ro� E1/2, the time scale for evolution of the boundary layer
is short compared to the interior spin-up time scale, and the motion in the core may
be treated as quasi-steady and two-dimensional, at least up to the point of an eruption
from sidewall viscous layers. In appendix A we provide a theoretical justification for
treating the flow as two-dimensional during this initial period.

The sidewall boundary layers are crucial in the nonlinear regime and are of more
significance than the top and bottom Ekman layers in stratified flow. Both van Heijst
et al. (1990) and Foster & Munro (2012) have speculated that a breakdown of such
boundary layers is the origin of columnar eddies, but the evolution of the viscous
sidewall region has not been explicitly considered. Given the parabolic nature of the
boundary layer on ∂Dv, the problem is made non-trivial by the periodic nature of
the layers across the four boundaries of the container cross-section. Furthermore, we
expect the sidewall region to become bi-directional (i.e. develop recirculatory regions).
Clearly, the nature of the flow in the connecting corners (x, y)= (0, 0), (1, 0), (1, 1)
and (0, 1) will be of some significance.

We begin by considering, for example, the boundary layer on the y= 0+ wall with
x ∈ [0, 1]. We first introduce a scaled time t= Ro−1 t̄ and a transverse boundary-layer
coordinate y= (E/Ro)1/2ȳ, and we let v= (E/Ro)1/2v̄ so that the momentum equation
in the x direction becomes

ut̄ + uux + v̄uȳ +Qx(x, z, t̄)= uȳȳ, (3.6)

as discussed in Section 4 of Foster & Munro (2012) and appendix A. Note that for
spin-up from rest, the focus of the experimental results presented earlier, Ro = 1 so
that t = t̄. Here Q(x, z, t̄) is a pressure correction such that Qx = −UUx, where U
is the external flow speed along y= 0+, which is (initially at least) determined from
the inviscid starting flow (2.3). In the most general case, the outer flow along y= 0+
could be dependent on z (and indeed t̄) as well as on x; but prior to eruption of the
sidewall layers, the z- and/or t̄-dependence is trivial, except at locations very near the
top and bottom boundaries, so we can take U=U(x). However, if there is a singular
breakdown of (3.6) at finite t̄= t̄s, then the assumption of a simple quasi-steady interior
flow must be abandoned for t̄> t̄s.

Prior to any eruption, with U = U(x) determined by (2.3) with y = 0, we can
solve for the evolution of the sidewall boundary layer on y = 0+. In terms of a
streamfunction formulation, with u = ψ̄ȳ and v̄ = −ψ̄x, the boundary-layer system
(3.6) reduces to

ψ̄ȳt̄ + ψ̄ȳψ̄ȳx − ψ̄xψ̄ȳȳ =U(x)U′(x)+ ψ̄ȳȳȳ, (3.7)

subject to the boundary conditions ψ̄ = ψ̄ȳ = 0 on ȳ= 0 and ψ̄ȳ→U(x) as ȳ→∞.
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It is important to note that along y= 0, near the corner (x= 0) the exterior velocity
is such that

U(x)∼− 4
π

x log x, (3.8a)

and similarly near x= 1,

U(x)∼− 4
π
(1− x) log(1− x). (3.8b)

This follows from an analysis of (2.2) in terms of a polar coordinate system (r, θ)
centred at a corner, as r→ 0. The response for small r is dominated by the constant
vorticity term, which leads to the logarithmic response. This free-stream behaviour
results in a rather more complicated boundary-layer formulation, and is best dealt with
via a rescaling:

Y =
(

U(x)
x(1− x)

)1/2

ȳ, τ = U(x)
x(1− x)

t̄, ψ̄ = (x(1− x)U(x))1/2Ψ (x, Y, τ ). (3.9a−c)

For the boundary-layer computation, we consider an idealised impulsive transition
of the container rotation rate. To capture this short-time impulsive behaviour, we make
use of a further rescaling by introducing a Rayleigh-layer coordinate Y = τ 1/2Ŷ , where
Ψ (x, Y, τ ) = τ 1/2Ψ̂ (x, Ŷ, τ ). The sidewall equation in this rescaled formulation then
becomes

Ψ̂ŶŶŶ +
Ŷ
2
Ψ̂ŶŶ − τ Ψ̂Ŷτ + τx(1− x){Ψ̂ŶŶΨ̂x − Ψ̂ŶΨ̂Ŷx}

+ τ 2λ(x)x(1− x){Ψ̂ŶŶΨ̂τ − Ψ̂ŶΨ̂Ŷτ }
= τx(1− x)U′(x)

U(x)
{Ψ̂ 2

Ŷ − 1} + τ(2x− 1)Ψ̂ Ψ̂ŶŶ, (3.10a)

where

λ(x)= U′(x)
U(x)

+ 2x− 1
x(1− x)

, (3.10b)

which remains regular in the limit of τ→ 0.

3.2. The limiting boundary-layer solution, on approaching a corner
If we consider (3.10) as x→ 0+ and x→ 1−, upon neglecting terms of O(1/log(x))
and O(1/log(1− x)), respectively, we find that

Ψ̂ŶŶŶ +
Ŷ
2
Ψ̂ŶŶ − τ Ψ̂Ŷτ =±τ {Ψ̂ 2

Ŷ − 1− Ψ̂ Ψ̂ŶŶ} (3.11)

is the leading-order balance, where the positive sign is taken at x= 0 and the negative
sign at x= 1.

The governing equation is clearly different at x=0+ and x=1−, which suggests that
there is a marked difference between the boundary-layer profiles on the ‘incoming’
and ‘outgoing’ sides of each corner. Furthermore, the solution near x= 0+ approaches
a steady state, whereas that near x = 1− thickens with increasing τ . Nevertheless,
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at finite values of the computational ‘time’ τ , the boundary layer remains thin, of
O(Re−1/2/log(x)) near x= 0+ and O(Re−1/2/log(1− x)) near x= 1−, where Re=Ro/E
is a Reynolds number. This suggests that a self-consistent leading-order asymptotic
approach can be constructed for high Reynolds number, for which the inflow and
outflow conditions at each of the four corners remain decoupled when considering
the boundary-layer evolution. We will check this formulation later, by quantitative
comparisons with a comparable two-dimensional Navier–Stokes formulation for finite
values of Re.

3.3. Unsteady boundary-layer solutions

The sidewall evolution can now be determined by a solution of (3.10) subject to Ψ̂ =
Ψ̂Ŷ = 0 on Ŷ = 0 and Ψ̂Ŷ → 1 as Ŷ →∞. Initial conditions for the boundary-layer
system are simply the Rayleigh-layer solution, as obtained from (3.10) with τ = 0.
Along y= 0 the anticyclonic interior flow is in the direction of increasing x; therefore,
to complete the specification of the parabolic sidewall boundary-layer system, we need
the starting velocity profile that arises in the corner x = 0+. To obtain this starting
profile, we solve the unsteady one-dimensional boundary-value problem obtained from
(3.11). Although the interior motion is always from x= 0+ to x= 1−, the flow within
the boundary layer may reverse near the wall owing to the adverse pressure gradient
associated with the interior starting flow. When the boundary layer contains such a
recirculation region, we must also specify the comparable solution as x→ 1−, which
again can be determined from (3.11).

Our computational procedure solves (3.10) via a second-order box scheme. To cope
with the logarithmic corrections near the corners, we employ a comparable rescaled
(logarithmic) downstream coordinate. To cope with flow reversal, we make use of
the ‘zigzag’ modification of the box scheme (Cebeci 1986), which necessitates the
inclusion of the solution at x= 1− as noted above.

In terms of the unscaled streamwise velocity u(x, y, t), for the boundary layer
adjacent to y= 0 the displacement thickness is

δ(x, t)=
∫ ∞

ȳ=0
(1− u/U(x)) dȳ, (3.12)

where U(x) is the ‘free stream’ velocity associated with the inviscid core flow along
the wall. In terms of the rescaled transverse coordinate (Ŷ), streamfunction (Ψ̂ ) and
time (τ ), this becomes

δ(x, τ )=
(

x(1− x)τ
U(x)

)1/2 ∫ ∞
Ŷ=0
(1− Ψ̂Ŷ(x, τ )) dŶ. (3.13)

In figure 6 we show the evolution of this displacement thickness, δ(x, τ ), and
the wall shear, uȳ(x, ȳ = 0), at constant values of the rescaled computational time
τ . Reverse flow is seen to develop first at the right-hand corner x = 1 at τ ≈ 1.
This reverse-flow region grows, with the location of the zero wall shear moving
‘upstream’ (i.e. to the left) towards x ≈ 0.65. The flow along the left-hand half
(x < 0.5) of the lower (y = 0) boundary is essentially quasi-steady by the time the
point of vanishing shear has advanced to x < 0.7. However, in the recirculation
region a spike in displacement thickness is found to occur at a finite time, for
x ≈ 0.75. This singular displacement thickness is associated with an eruption of the
sidewall boundary layer into the bulk fluid at RoΩt∗≈ 1.25, and for larger times the
boundary-layer approximation is obviously no longer valid.
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FIGURE 6. Boundary layer results: (a) evolution of the displacement thickness, δ, at
rescaled computational times of τ = 0.5, 1, . . . , 3.5, 3.6, 3.7; (b) evolution of the
shear distribution along the lower wall ȳ = 0, at rescaled computational times of τ =
0.5, 1, . . . , 3.5, 3.6, 3.7. In both panels, τ increases in the direction of the arrow shown.

3.4. A two-dimensional finite-Re formulation
We now consider a direct computation of the Navier–Stokes equations at large but
finite Reynolds number, in order to examine how the predictions arising from the
boundary-layer theory are realised in the full equations. We will still assume that
the flow remains two-dimensional on the time scale of interest, and compare the
predicted flow structure to the experimental results obtained for spin-up from rest
(Ro = 1). The Navier–Stokes equations are solved using an adaptive Galerkin finite
element method implemented via the library oomph-lib; see Heil & Hazel (2006).
The computational domain is now the entire cross-section of the container, and we
do not assume any symmetry in the system. The fluid variables are discretised using
isoparametric Q2P1 (Taylor–Hood) elements in which the velocities are interpolated
quadratically and the pressures are interpolated linearly within each element. The
time derivative terms are treated implicitly using a second-order BDF2 method and
the resulting discrete nonlinear system is solved by Newton iteration.

Our boundary-layer analysis is developed assuming an impulsive transition in the
rotation rate of the container. For the Navier–Stokes computation we use initial
conditions obtained from a composite solution constructed from the inviscid solution
(2.3), modified to match the required no-slip conditions at the boundary using the
small-τ boundary-layer solution. For the BDF2 method, this composite solution
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FIGURE 7. Comparison of boundary-layer results with two-dimensional Navier–Stokes
computations: profiles of the scaled wall shear Re−1/2uy(x, y= 0, t̄) are shown at t̄= 0.5;
Navier–Stokes results for Re = 1250, 5000 and 20 000 are shown as dashed lines (with
Re increasing in the direction of the arrows), and the prediction of the boundary-layer
computation is represented by the solid line. For spin-up from rest, Ro= 1 and so t̄= t=
Ωt∗.

is assumed at times t = 1t and t = 21t (where 1t is the computational time
step, typically 0.005), and then computation determines the subsequent evolution for
t= n1t with n= 3, 4, . . . . This approach has been used in other comparable impulsive
boundary-layer problems with some success, such as Hewitt et al. (2011). Spatial
adaptivity is employed to accurately resolve the fine near-wall structures, and results
presented herein have been confirmed to be converged by repeated computation over
different spatial–temporal refinements. Typically the computation had approximately
2.5× 105 degrees of freedom.

3.4.1. A comparison with boundary-layer theory
In figure 7 we begin by comparing the wall shear along y = 0 at a fixed time of

t̄ = 0.5 and increasing Reynolds numbers Re = Ro/E = 1250, 2500 and 20 000. At
this time, t̄ = RoΩt∗ = 0.5, the boundary layer has a single recirculation region, as
suggested by the negative-wall-shear region near x= 1, and there is good agreement
between the finite-Re numerical results and the asymptotic (boundary-layer) theory for
increasing Re. In figure 8 we track the location of the zero-shear points along the wall
y=0 as a function of dimensionless time t̄=RoΩt∗. It can be seen from figure 8(a–c)
that multiple recirculations develop. At finite Reynolds number, the flow is initially
anticyclonic near y= 0, with a thin developing region of cyclonic flow found near the
corner corresponding to x = 0 or x = 1. This cyclonic corner eddy grows in extent,
a growth that continues until two further subregions of anticyclonic motion develop;
one appears further into the corner, whereas the other can be seen near x≈ 0.8 (see
figure 8c).

As the Reynolds number is increased, the growth of the primary (cyclonic) corner
eddy is in line with the boundary-layer prediction as represented by the solid line in
figure 8. The time of the boundary-layer eruption is shown in figure 8 by the circular
data point near t̄= t̄s≈ 1.25. Although the boundary-layer solution terminates with the
eruption, at finite Reynolds numbers this singular behaviour is rapidly mitigated as the
boundary layer thickens.
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FIGURE 8. The loci of points of zero shear, uy(x, y= 0, t̄)= 0, along the y= 0 wall at
finite Reynolds numbers for a two-dimensional Navier–Stokes computation, which shows
the development of the columnar corner eddies at (a) Re = 1250, (b) Re = 5000 and
(c) Re = 20 000. In each panel the solid line indicates the extent of the corner eddy,
as predicted by boundary-layer theory, which terminates with a singular breakdown near
t̄ ≈ 1.25, indicated by the filled circle. The arrows in (a) indicate the sense of the flow
direction adjacent to y= 0, left-to-right being anticyclonic and right-to-left being cyclonic.
For spin-up from rest, Ro= 1 and so t̄= t=Ωt∗.

Finally, in figure 9 we show the evolution of the vorticity field for Re= 40 000. For
asymptotically high Reynolds numbers, the (attached, non-interacting) boundary layer
only exists up to t̄ ≈ 1.25, but the separation is delayed by finite values of Re. In
figure 9(a) the boundary layer is showing signs of thickening near x= 0 and y= 0.1
at t̄ = 1.25. The location of this thickening propagates to larger values of y, against
the dominant motion of the anticyclonic core flow, and by t̄= 1.65 the thickening has
become much more prominent at y ≈ 0.15. Shortly afterwards, at t̄ = 2.25, there is
clearly no simple attached wall layer, as separation had occurred near y ≈ 0.25. At
this latest time value, the container has undergone approximately one quarter of its
first revolution in the context of spin-up from rest.

3.4.2. A comparison with laboratory data
Having established good quantitative agreement between the two-dimensional

Navier–Stokes calculations and the unsteady boundary-layer theory, we now move
on to comparing the computational results against data acquired in experimental
work. As the numerical solution assumes an impulsive transition of the container
rotation frequency, the computational times for the numerical results are measured
from when the container frequency (of the laboratory experiment) is at its final value
of 0.083 rad s−1.

We first present a qualitative comparison, by displaying instantaneous streamlines
of the numerical solution at the same times for which experimental results are shown
in figure 4(a–f ) (for the case where Ro = 1 and Re = 12 000). Figure 10 shows the
corresponding two-dimensional finite-Reynolds-number predictions for Re = 12 000;
here (a–f ) are to be compared with the respective panels of figure 4.

There is good correspondence between the numerical results in figure 10 and the
experimental visualisation in figure 4. However, for a more quantitative comparison we
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FIGURE 9. (Colour online) Vorticity contours obtained from a two-dimensional Navier–
Stokes computation, for spin-up from rest with Re= 40 000 at (a) t̄= 1.25, (b) t̄= 1.65,
(c) t̄= 2.25 and (d) t̄= 2.5. Contours are uniformly spaced between values of −35 to 35.
For spin-up from rest, Ro= 1 and so t̄= t=Ωt∗.

also examine the predicted and measured horizontal velocity components (u, v) along
arbitrary cross-sections of the domain. Figure 11 shows both u(x, y, t) and v(x, y, t)
as functions of x at fixed times t = 1.1, 3.2, 7.8 (corresponding to those shown in
figures 10 and 4) and at y= 0.1, 0.3. These y locations were chosen to be both in the
bulk of the corner vortex and at its outer edge when fully developed. There is a good
quantitative agreement between the experimentally observed velocity profiles and the
two-dimensional prediction.

4. Discussion

We have presented the results of an experimental and theoretical investigation into
the spin-up of a fluid (homogeneous or linearly stratified) in a cylinder of square
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FIGURE 10. Results of a Navier–Stokes computation with Re = 12 000, assuming a
two-dimensional response. The contours of the streamfunction are shown at times that
correspond to the (Ro = 1) experimental images of figure 4(a–f ), respectively. Contours
are non-uniformly distributed at values of 0,−0.001,−0.002,−0.004, . . . ,−0.018 (solid
line, cyclonic) and 0.15, 0.14, 0.13, . . . , 0.01, 0.005, 0.0025, . . . , 0.0003125 (dashed lines,
anticyclonic).
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FIGURE 11. Comparison of experimental results with a two-dimensional Navier–Stokes
computation: horizontal velocity components are shown at constant values of y, for the
experiment shown in figure 4. The component u(x, y, t) is plotted in (a) t= 1.1, (c) t= 3.2
and (e) t = 7.8, while the component v(x, y, t) is plotted in (b) t = 1.1, (d) t = 3.2 and
(f ) t = 7.8. The open circles correspond to experimental data acquired at y = 0.1, while
the filled circles represent data acquired at y= 0.3. The solid lines are the corresponding
results obtained from the two-dimensional Navier–Stokes solution shown in figure 10.

cross-section. Over the time it takes to perform one rotation of the container, the
Ekman layers on the top and bottom boundaries are still developing, but the sidewall
layers separate from the (vertical) container walls. This separation leads to an eruption
of vorticity and axial vortices becoming trapped in the vertical corners of the container,
leaving an approximately circular separating streamline for the anticyclonic interior
flow. The work of Foster & Munro (2012) showed that these sidewall layers are



268 R. J. Munro, R. E. Hewitt and M. R. Foster

governed by the (nonlinear) Prandtl boundary-layer equation, and in this work we
explicitly show that a solution of the boundary-layer system does indeed reveal a
singular breakdown (at RoΩt∗ ≈ 1.25), as conjectured previously by van Heijst et al.
(1990). Beyond this critical time, an attached (non-interacting) boundary-layer solution
is not possible, as the displacement thickness becomes unbounded.

The evolution of the boundary layer has qualitative similarities to the impulsive
translation of a cylinder in a viscous incompressible fluid; see, e.g., Koumoutsakos
& Leonard (1995). In the context of the flow adjacent to the boundary y = 0 and
x∈ (0, 1), as described in § 3, we may conceptually associate the x= 0+, 1− positions
with, respectively, the forward and rear attachment points in the cylinder problem.
Near x= 0+ a quasi-steady solution is established, but near x= 1− the boundary layer
continues to thicken. The thickening of the boundary layer propagates upstream, until
a singular eruption is achieved in finite time. What makes this problem somewhat
unusual is that periodicity of the square container means that the x = 1− solution is
connected to the x= 0+ solution via the corner regions of the container; the external
flow also contains a logarithmic dependence in the corner regions. Nevertheless, at
finite values of the rescaled time (τ ) appropriate to the boundary-layer evolution, and
in the leading-order high-Re limit, the layers are formally empty at the corners, albeit
only logarithmically so. This allows for a consistent high-Reynolds-number asymptotic
description.

Given the unusual periodic nature of the boundary layer, we have been careful
to validate the asymptotic description with a finite-Reynolds-number numerical
solution, both of which assume a two-dimensional response over a time scale of
O(Ro−1Ω−1). The analysis in appendix A, together with the observations and data
from the experiments – performed for the case of spin-up from rest, Ro= 1 – justify
this assumption, showing that the flow (in the corners and the central core) remains
horizontally two-dimensional during the period prior to, and shortly after, the singular
breakdown of the sidewall layers. Very good agreement is found between the high-Re
boundary layer and the two-dimensional Navier–Stokes predictions. In addition, the
qualitative nature of the instantaneous streamlines and the quantitative comparison of
laboratory data both show remarkable agreement with these same two-dimensional
numerical predictions for the Ro = 1 case. When S is large – corresponding to a
strongly stratified fluid – this agreement persists over one rotation of the container,
as shown in figure 4 (S= 100) and figure 10; but as S is reduced, three-dimensional
flow becomes apparent in the corner vortices after approximately half a rotation of
the container.

Appendix A. More on two-dimensionality
The equations of motion are given in (3.3). As noted in § 3.1, a key issue is the

two-dimensionality of the flow. At least prior to the eruption of sidewall vorticity
into the core, it is convenient to consider the inviscid core and the sidewall boundary
layers separately on this point. It will emerge that such considerations lead to more
insight into the subsequent motion as well. Below, we consider the interior motion, the
sidewall layers and, finally, other regions of intense shear. We consider both large-S
and small-S cases.

A.1. The core flow
Using the equation for the vertical vorticity component ζ = vx − uy of the vorticity
vector ω=∇×u formed from (3.3b), and combining the vertical component of (3.3b)
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with (3.3c), leads to the equation pair

Dζ − 2wz − Ro(ω · ∇)w= 0, (A 1)
(D2 + S)w=−Dpz, (A 2)

where

D≡ ∂

∂t
+ Ro

(
u · ∇

)
. (A 3)

A.1.1. Large S
If S� 1, then from the second equation we have w=O(S−1), making the terms in

(A 1) that involve w negligible to leading order; therefore the equation reduces to

D1ζ = 0 where D1 = ∂

∂t
+ Ro

(
u
∂

∂x
+ v ∂

∂y

)
. (A 4)

So long as no pathlines enter the flow domain from the vertical walls – i.e. no
eruption has yet occurred – we conclude that

ζ = 2 for t< ts and for all z, (A 5)

where ts is the time for boundary-layer eruption into the core. The solution to this
equation has been given by (2.3). Since the sidewalls are vertical, this equation
indicates that u is z-independent; not only is the motion in horizontal planes, but it
is also z-independent. So then, since pz = 0, equation (A 2) indicates that w is even
smaller than O(S−1).

Even after boundary-layer eruption, flows in regions away from singular wall layers
and other regions of high shear are given by solutions to (A 4), but of course the
solution is no longer (A 5).

A.1.2. S=O(1)
The question is, of course, whether the flow is still two-dimensional. We know

that vertical motion at the horizontal boundaries is of scale E1/2, owing to eruption
from the nonlinear Ekman layers on those surfaces. So the only way in which larger
vertical core motion could arise would be from divergent horizontal motion, or from
no-penetration at a sloping boundary. However, neither occurs here, so it appears that
w is sufficiently small to lead once again to pz= 0 and Dζ = 0 from (A 1) and (A 2),
and hence the motion is again two-dimensional. Thus, the order of S is apparently not
relevant with regard to two-dimensionality of the core flow.

A.2. The sidewall layer
The sidewall boundary layer is two-dimensional in the small-Rossby-number case, as
noted by Foster & Munro (2012), but it is less than obvious that it is two-dimensional
for Ro=O(1). Using the usual boundary-layer approximations on the layer on y= 0+
and writing y= E1/2ȳ and v = E1/2v̄, the x- and y-component equations are

ut + Ro(uux + v̄uȳ +wuz)− 2E1/2v̄ + px = uȳȳ, (A 6)
2E1/2u+ pȳ = 0. (A 7)
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Upon integrating the continuity equation,

E1/2v̄ = 1
2

px − 1
2

Qx(x, z, t)− E1/2
∫ ȳ

0
wz(x, Y, z, t) dY. (A 8)

Substituting px from this expression into (A 6) gives

ut + Ro(uux + v̄uȳ +wuz)+Qx(x, z, t)+ 2E1/2
∫ ȳ

0
wz(x, Y, z, t) dY = uȳȳ. (A 9)

Clearly, to leading order, the integral term is negligible.

A.2.1. Large S
We know from § A.1.1 above that for S� 1, the interior motion is z-independent,

so then the velocity at the layer’s edge is U(x, t), and hence Qx =−Ut − Ro UUx. In
that case, the first two terms in the pressure asymptotic series take the form

p= 1
2 Q(x, t)+ E1/2p1(x, ȳ, z, t)+ · · · . (A 10)

This then leads to

ut̄ + uux + v̄uȳ +wuz +Qx(x, z, t̄)= uȳȳ. (A 11)

The equation for the vertical motion in the boundary layer is

wt + Ro(uwx + v̄wȳ +wwz)+ E1/2p1z =wȳȳ − ρ, (A 12)

and the density perturbation equation is

ρt + Ro(uρx + v̄ρȳ +wρz)− Sw= 0. (A 13)

For S = O(1), it is evident from these equations that both w and ρ are of order
E1/2. So the w convection term in (A 11) is negligible, leading to the two-dimensional
boundary-layer equation (3.6), for which we have presented numerical solutions.

A.2.2. S=O(1)
If the interior motion is two-dimensional and z-independent as suggested in § A.1.2,

then (A 11) is again correct. Inspection of (A 12) and (A 13) shows that w=O(E1/2)
in this layer, and hence (A 11) again reduces to (3.6).

A.3. Regions of high shear
Intense vortices are evident in figures 4 and 5, the result of erupted boundary-layer
vorticity. When the Rossby number is small, it is well known that the cores of such
vortices have width E1/3, and in such regions w is of the same order as the swirl
velocity there. Of course, when Ro exceeds E1/2, that scaling is no longer correct. In
this case, for S=O(1), the core thickness scales with E1/2, and the vertical velocity in
such a zone is of the same order as the swirl velocity, hence the absence of particles
in vortex cores of the latter images in figure 5. For S large, however, scale analysis
of the vertical momentum equation indicates that the vortex core width is (ES)1/2,
so the core is thicker than in the smaller-S case, as is evident from the figures, and
furthermore the vertical velocity in the core scales with S−1, so the particles are not
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swept out of the core in figure 4. Hence, in the case of strong stratification, the
vertical motion is inhibited, even in the vortex cores; but for S = O(1), significant
vertical motion occurs.
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