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This theoretical and numerical study presents three-dimensional boundary-layer solu-
tions for laminar incompressible flow adjacent to a semi-infinite flat plate, subject to a
uniform free-stream speed and injection through the plate surface. The novelty in this
case arises from a fully three-dimensional formulation, which also allows for slot injection
over a spanwise lengthscale comparable to the boundary-layer thickness. This approach
retains viscous effects in both the spanwise and transverse directions, and effectively
results in a parabolised Navier–Stokes system (sometimes referred to as the ‘boundary-
region equations’). Any injection profile can be described in this approach, but we restrict
attention to three-dimensional states driven by a finite-width slot aligned with the flow
direction and self-similar in their downstream development. The classical two-dimensional
states are known to only exist up to a critical (‘blow off’) injection amplitude, but the
three-dimensional solutions here appear possible for any injection velocity. These new
states take the form of low-speed streamwise-aligned streaks whose geometry depends
on the amplitude of injection and the spanwise width of the injection slot; intriguingly,
although very low wall shear is typically obtained, streamwise flow reversal is not ob-
served, however hard the blowing. Asymptotic descriptions are provided in the limit of
increasing slot width and fixed injection velocity, which allows for classification of the
solutions according to two bounding injection rates.

1. Introduction

It is well known that even low levels of suction/injection into a boundary layer can have
dramatic consequences in terms of the downstream distribution of skin friction, stability
properties of the layer and heat transfer. In some circumstances one may wish to utilise
injection to destabilise a boundary layer and provoke a turbulent response, enhance
mixing, or to introduce a localised disturbance (e.g. Haidari & Smith 1994). Injection
is also central to the methods of film/transpiration cooling of aerothermodynamic heat
loads, with an injection layer used to ameliorate heat transfer to the boundary (Gross
et al. 1961; Goldstein 1971), or to introduce an active injectant such as hydrogen into an
oxygen stream, e.g. Liu & Libby (1971).
In the context of wall injection, the canonical problem of a two-dimensional flat-plate

boundary layer has been addressed in some detail, both with and without an external
pressure gradient, and in both the compressible and incompressible formulations. The
simplest formulation considers a uniform flow of speed U∗

∞
, with a fluid of kinematic

viscosity ν∗, and a downstream coordinate x∗, leading to a local Reynolds number of
Rex = U∗

∞
x∗/ν∗ = Rex, where x is a dimensionless downstream coordinate and Re a

global Reynolds number based on an ad-hoc lengthscale choice. In the incompressible
limit, assuming a two-dimensional description with a (self-similar) boundary-layer scale
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injection velocity ofK U∗

∞
Re

−1/2
x , we obtain the Blasius equation, which is parameterised

by the dimensionless injection rate K through the surface boundary condition. As the
injection rate is increased, we encounter the so called ‘blow off’ phenomena, where the
entire self-similar boundary-layer solution ceases to exist for K larger than a critical
value of approximately 0.876, as presented by Emmons & Leigh (1954) and discussed in,
for example, Rosenhead (1963, p. 243) and Neiland et al. (2008, p. 173). At this critical
value a singular solution is encountered with the wall shear and displacement thickness
approaching zero and infinity respectively.
The asymptotic behaviour of the two-dimensional steady similarity solution at injection

rates near to the critical value has been discussed by Kassoy (1970, 1971). The structure
of these solutions is rather intricate, with an inviscid near-wall response separated from
the outer irrotational flow by a displaced shear layer. The displacement of the shear
layer is found to be O(log(1/τ)Re−1/2) and the (dimensionless) shear value, τ , satisfies
a transcendental equation with respect to the perturbation about the critical injection
rate. If one replaces the self-similar spatial form of the injection with a uniform injection
rate, then a similar structure dominated by logarithmic terms is found, but at a critical
downstream location (Catherall et al. 1965), associated with a steady separation of the
boundary layer.
As discussed in the introduction of Kassoy (1971), a peculiarity of the self-similar in-

jection ‘blow off’ problem is that, in the presence of a favourable pressure gradient, the
singularity is removed and a solution exists for all K. Rather than a singular ‘blow off’,
any small favourable pressure gradient instead leads to a shear layer that is displaced
further from the wall as the injection magnitude K is increased, the asymptotic nature of
which is discussed by Watson (1966) and Elliott (1968). This apparent disparity between
the sudden singular ‘blow off’ in the absence of a pressure gradient and the gradual dis-
placement for a favourable pressure gradient led to the development of weakly interacting
theories of injection. Kassoy (1971) followed by Klemp & Acrivos (1972) both demon-
strated that an interacting solution was possible with an inner near-wall injection region
of O(Re−1/3). This solution is valid for K & 0.876, but there remains a singularity at the
critical injection value (K ≈ 0.876), where the wall shear is still zero. As a consequence
the interacting theory predicts, somewhat unexpectedly, that the shear at the boundary
is non-monotonic, decreasing with increasing injection rates for K . 0.876 and then
increasing again at higher injection rates with K & 0.876.
The precise details of the interacting flow at the critical injection rate K ≈ 0.876 were

later clarified in the work of Kassoy (1974). The asymptotic structure that describes the
near-singular solution is easily disrupted, in particular as the displacement grows, a weak
associated favourable pressure gradient is induced in the outer flow, which turns out to
be enough to regularise the problem. This allows for a non-singular weakly-interacting
structure, with a small (but finite) wall shear of O(Re−1 log(Re)) when the injection is
precisely at the critical value of the non-interacting formulation.
In this work we address the same fundamental transpiration problem, but do not

restrict ourselves to a two-dimensional theory; instead we allow for injection over a fi-
nite spanwise lengthscale that is comparable to the boundary-layer thickness. Our focus
on short spanwise scales is driven by recent experimental evidence that injection over
such short scales leads to novel behaviour, and in particular can in some circumstances
delay separation as described by, for example, Fernandez et al. (2013). Other experi-
mental studies are highlighted by van Dommelen & Yapalparvi (2014), who also give
a theoretical analysis to demonstrate the surprising result that a periodic arrangement
of microjets can remove separation from a boundary layer (albeit with weak wall cur-
vature) by including short-scale spanwise effects. Unlike van Dommelen & Yapalparvi
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(2014), our approach does not require wall curvature, and allows for transpiration at
all streamwise locations (rather than a localised microjet-like forcing), but we will allow
this to be of finite spanwise extent, rather than enforcing spanwise periodicity. Relaxing
the assumption of periodicity in the spanwise direction requires a careful consideration
of the far-field conditions, but also allows us to consider the evolution of the solutions
for blowing through increasingly wide slots, and how such states relate to the classical
two-dimensional solutions.

Rather than spatially marching the flow, we will seek self-similar solutions in the
streamwise direction, thus constructing a direct analogue of the classical transpiration
problem reviewed above. We will show that the complexities of the asymptotic struc-
ture found in the classical two-dimensional theory, are absent when short-scale three-
dimensional effects are allowed for. In particular, there is no critical ‘blow off’ phenomena.
In the sense that the ‘blow off’ is a simplified form of (steady) separation, our results offer
support to those of van Dommelen & Yapalparvi (2014) regarding the role of short-scale
effects acting to resist separation.

In the subsequent formulation we will employ the ‘boundary-region equations’ (Kemp
1951), which are in essence a parabolised version of the Navier–Stokes equations. This
approach assumes that spanwise lengthscales are comparable to the transverse boundary-
layer thickness, ensuring that diffusion in the cross section is retained in both directions,
but the longer streamwise lengthscale leads to neglect of streamwise diffusion. Similar
formulations have previously been employed in high Reynolds number descriptions of
(for example) corner boundary regions (Dhanak & Duck 1997), wakes behind elongated
roughness elements (Goldstein et al. 2016), flow near small-scale surface gaps (Hewitt
& Duck 2014), the influence of upstream vorticity on transition (Wundrow & Goldstein
2001) and the generation of laminar streaks by freestream vorticity (Ricco & Dilib 2010).
The formulation of van Dommelen & Yapalparvi (2014) is also equivalent if one considers
the zero-curvature limit of their equations, although in their case the short-scale spanwise
forcing is also assumed to be periodic, which simplifies the far-field behaviour compared
to the (finite-spanwise extent) our problem.

2. Formulation

To formulate the problem we assume that the flow adjacent to the plate is laminar,
steady and incompressible, and is to be described according to a dimensional Cartesian
coordinate system (x∗, y∗, z∗), as shown in figure 1. We will retain the notation of the
introduction, with a free stream speed of U∗

∞
and kinematic viscosity ν∗. The plate is

defined by y∗ = 0, x∗ ≥ 0, and x∗ is increasing in the streamwise direction with a
corresponding local Reynolds number Rex = x∗U∗

∞
/ν∗ ≫ 1. A non-dimensional solution

is sought in a rescaled coordinate system

(z∗, y∗) =
√
2x∗Re

−
1

2
x (ζ, η) . (2.1a)

This ζ scale is central to the formulation and allows for spanwise scales that are compa-
rable to the boundary-layer thickness. For the velocity field, we introduce

u∗ = U∗

∞
U(ζ, η) + · · · , (2.1b)

(v∗, w∗) = U∗

∞
Re

−
1

2
x (V (ζ, η) + · · · ,W (ζ, η) + · · · ) , (2.1c)



4 R.E.Hewitt, P.W.Duck and A.Williams

U∗

∞

z∗, w∗

x∗, u∗

y∗, v∗

x∗ = 0

z∗ = +x∗

√
2Re

−1/2
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√
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Injection region with
v∗ prescribed on y∗ = 0.

Figure 1. An analogue of the classical boundary layer adjacent to a flat plate, with leading edge
at x∗ = 0 and subject to fluid injection at the surface. The classical ‘blow off’ results (Kassoy
1970, 1971, 1974) are independent of z∗, whereas here we force three-dimensionality directly by

injection through a (narrow, symmetric) slot of spanwise (half-) width
√
2x∗Re

−1/2
x ζ0, in the

large Rex limit. Of particular interest is the wide-slot limit ζ0 ≫ 1.

whilst the dimensional pressure field is

p∗ = ρ∗U∗

∞

2
(

Re−1/2
x p+Re−1

x P (ζ, η) + · · ·
)

, (2.1d)

where ρ∗ is the constant fluid density. Here p is the classical pressure correction obtained
in the two-dimensional theory, but for these three-dimensional flows P is the significant
term, as it affects the leading-order solution.
In what follows attention is focused on transpiration through the plate surface of the

form

v∗(ζ, η = 0) = U∗

∞
Re

−
1

2
x Vtransp(ζ) . (2.2)

This is not a conceptual restriction of this formulation, and more general x∗ dependencies
can be handled by parabolic marching/development in the downstream direction. The
advantage of the choice (2.2) lies in a self-similar development with x∗, leaving us to only
solve in the cross-sectional plane spanned by ζ and η.
Applying a boundary-layer approximation, under the assumption that the local Reynolds

number Rex ≫ 1, results in a system that retains viscous diffusion in the cross-sectional
(that is, constant x∗) plane and the spanwise/transverse momentum equations are both
affected by the pressure term P . It is preferable to cross-differentiate and eliminate this
pressure term, then employ a slight change of the dependent variables via

V (ζ, η) =
1√
2

(

ηU(ζ, η) − Φ(ζ, η)
)

, (2.3a)

W (ζ, η) =
1√
2

(

ζU(ζ, η) −Ψ(ζ, η)
)

; (2.3b)
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this leaves Φ and Ψ as the variables of interest. This slight reformulation is equivalent
to that found in (for example) Stewartson (1954) for the two-dimensional Falkner-Skan
problem or Pal & Rubin (1971) for three-dimensional flow along a corner.
The above formulation results in the boundary-region equations in the form:

2U = Φη +Ψζ , (2.4a)

Θ = Ψη − Φζ , (2.4b)

∇2U = −ΦUη −ΨUζ , (2.4c)

∇2Θ = 2[ζUUη − ηUUζ ]− ΦΘη −ΨΘζ − 2UΘ , (2.4d)

where ∇2 is the two-dimensional Laplacian in the plane spanned by η and ζ. Whilst
perhaps less intuitive than the primitive variable formulation, this system is well known
for its application to corner boundary-layer flows, see for example Pal & Rubin (1971).
It is advantageous to use this formulation because (2.4a) and (2.4b) can be combined
to give expressions for the Laplacian of Φ and Ψ. This yields a system of the form
∇2Q = R(Q, ζ, η), where Q = (U,Φ,Ψ,Θ) and R is a nonlinear function of the unknowns
and position in the plane. This approach allows for a relatively straightforward numerical
discretization scheme.
This system is to be solved subject to U → 1, Θ → 0, Ψ → ζ as η → ∞, corresponding

to a uniform external flow with no cross flow. At ζ = 0 we assume appropriate symmetry
conditions whilst for large ζ the solution is the usual flat-plate boundary layer. At the
surface of the plate (η = 0), we require that U = 0, Ψ = 0 and surface transpiration (2.2)
leads to

Φ(ζ, η = 0) = −
√
2Vtransp(ζ) . (2.5a)

We will focus on cases where the transpiration is largely uniform and exists over a finite
spanwise width, by taking

Vtransp(ζ) =
K

2
√
2

(

1− tanh
(

γ(|ζ/ζ0| − 1)
)

)

. (2.5b)

This gives an approximate top-hat shape to the transverse velocity profile at the plate sur-
face, with ζ0 defining the spanwise extent of the transpiration region on the (2x∗ν∗/U∗

∞
)1/2

scale, γ defines the rapidity of the transition from transpiration to no transpiration (and
is introduced largely for numerical expediency), and K defines the magnitude of the
transpiration.
Suction from the boundary layer is K < 0, whilst K > 0 is injection into the layer.

In what follows, we will take γ = 20 as a default parameter unless otherwise stated,
and focus our attention on injection (K > 0) rather than the more straightforward
suction case. We note that this parameterisation of the injection velocity is consistent
with that employed in the two-dimensional problem, as discussed at some length in the
works of Kassoy (1970, 1971, 1974) regarding ‘blow off’. It must be highlighted however
that the dimensional transpiration velocity, when scaled according to (2.1), includes a

multiplicative factor of 2−1/2, being U∗

∞
Re

−1/2
x K/

√
2.

2.1. Numerical implementation

One may be tempted to solve (2.4) under the assumption that the flow returns to the
Blasius solution when sufficiently far from the injection region. Attempting this approach
shows that the decay towards the Blasius state in the far field is in general algebraic and
therefore requires very large domains. As a consequence, our numerical method seeks to
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reduce the size of the computational domain by imposing far-field boundary conditions
that are consistent with the asymptotic decay towards the Blasius state in the far field.
We can explicitly remove the Blasius base flow by making the substitution

U(ζ, η) = UB(η) + Ũ(ζ̂ , η) , (2.6a)

Φ(ζ, η) = ΦB(η) + Φ̃(ζ̂ , η) , (2.6b)

Ψ(ζ, η) = ζ ΨB(η) + ζ0Ψ̃(ζ̂, η) , (2.6c)

Θ(ζ, η) = ζ ΘB(η) + ζ0Θ̃(ζ̂, η) , (2.6d)

into the governing system (2.4). Here the tilde quantities represent a (nonlinear) per-
turbation that is driven purely by the presence of the injection slot and we employ the
rescaled coordinate ζ̂ = ζ/ζ0 to span the extent of the slot. In the absence of injection, the
tilde quantities are all zero, and the solution is simply UB = Φ′

B, ΨB = Φ′

B, ΘB = Φ′′

B,
where (2.4) shows that ΦB satisfies the Blasius equation

Φ′′′

B +ΦBΦ
′′

B = 0 , (2.7)

and the prime notation indicates differentiation with respect to η.
The decomposition (2.6) allows the far-field behaviour of (Ũ , Φ̃, Ψ̃, Θ̃) to be explicitly

enforced as part of the numerical solution procedure. The far-field asymptotic behaviour
is discussed in detail in Hewitt & Duck (2014) and we only present the main results
here. It is sufficient here to note that for ζ ≫ 1 and/or η ≫ 1, Φ̃ and Ψ̃ both satisfy the
harmonic equation, leading to

Φ̃ ∼ Aη

ζ̂2 + η2
, Ψ̃ ∼ Aζ̂

ζ̂2 + η2
, (2.8)

whilst Ũ and Θ̃ are both exponentially small. Here A is a constant that must be deter-
mined as part of the global computation of (2.4) via the decomposition (2.6). If A > 0

then the flow field has a net mass transport towards the centreline (η = ζ̂ = 0) in the far
field, whilst A < 0 corresponds to net outflow.
In classical boundary layers, algebraic decay into a freestream is typically not allowed.

This conclusion is drawn from an examination of the properties of harmonic outer so-
lutions, which would necessarily be singular at all points on approaching the boundary
(e.g. Brown & Stewartson 1965; Hewitt et al. 2002). However, these arguments do not
apply to the three-dimensional solutions with short-spanwise scales discussed herein. In
our case (2.8), the vorticity still decays exponentially and the outer Laplace problem is
only singular along a line.
A second-order (finite-difference) method for the numerical solution of (2.4) subject to

the decomposition (2.6) is employed; this follows the method of Hewitt & Duck (2014).

The computational mesh is non-uniformly spaced in the ζ̂ , η plane to ensure that more
nodes are concentrated near the plate surface, within the injection region (ζ̂ < 1) and at

the edge of the injection region (ζ̂ = 1) where the injection velocity changes rapidly to
zero. At each nodal point the four unknowns (Ũ , Φ̃, Ψ̃, Θ̃) are stored. Newton iteration is
used to determine the 4Nζ̂Nη +1 unknowns, where Nζ̂ and Nη are the number of nodes

in the (ζ̂ , η) directions, and the additional unknown is the mass flux coefficient denoted
by A in (2.8). At each iteration, the linear system is sparse and the inversion is achieved
by use of the MUMPS library (Amestoy et al. 2000); the number of degrees of freedom
ranges up to approximately 5.76 × 106 depending up the strength of the injection flow.
In general, larger values of K or ζ0 require more degrees of freedom (larger Nζ̂ and Nη)
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Figure 2. The three flow regimes observed for K > 0 (blowing) into an otherwise two-dimen-
sional boundary layer; only ζ > 0 is shown here with assumed symmetry about ζ = 0. Results
are shown for a wall transpiration (2.5), with ζ0 = 20, γ = 20 and (a,b) K = 0.5 (c,d) K = 1.5
and (e,f) K = 2.5. The left-hand column shows contours of streamwise velocity U , whilst the

right-hand column shows the perturbation vorticity component ζ0Θ̃ from (2.6) together with
the corresponding particle path lines in the ζ-η plane.

and a larger computational domain. For example, for K = 2.5, ζ0 = 16 our choices were
Nζ̂ = Nη = 1201 with a domain truncation of ζ̂ < 20 (ie. ζ < 320) and η < 320.



8 R.E.Hewitt, P.W.Duck and A.Williams

3. Results

In the absence of any injection through the plate surface (K = 0) the solution remains
two-dimensional, and is provided by (2.7). Injection through the plate surface is only over
a finite spanwise lengthscale parameterised by ζ0, as described by (2.5), and therefore
any non-zero K will necessarily induce a three-dimensional response.
In the classical two-dimensional theory (Neiland et al. 2008, p. 173), increasing injection

through the plate surface eventually leads to a detachment of the boundary layer. This
detachment occurs at a critical K ≈ 0.876 and is associated with a vanishing of the
streamwise shear on the plate, and a shear layer that becomes infinitely displaced from the
surface. Between this shear layer and the plate surface there is no substantial streamwise
motion. It is therefore a natural question to address the relevance of this behaviour to
our more general three-dimensional flow when ζ0 ≫ 1. That is, to what extent (if any) do
we recover the two-dimensional classical results for injection over increasing slot widths,
and is K ≈ 0.876 still a critical injection speed at which the boundary layer detaches
entirely from the surface?

3.1. Increasing injection-slot width

On solving (2.4) subject to injection at the plate surface, K > 0, we find that the flow
can be characterised as one of three types, as the injection-slot width ζ0 increases. In the
remainder of this section we will discuss the differences between these three types of flow
response with an emphasis on their physical features, then in section 4 we will describe
these regimes asymptotically for ζ0 ≫ 1.
In figure 2 the flow is shown for three values of the injection amplitude K = 0.5, 1.5, 2.5

and a fixed slot width of ζ0 = 20. For this relatively large value of ζ0 these three injection
amplitudes show three distinct types of behaviour. In what follows we classify these three
types of response and identify the critical injection amplitudes associated with each type.

Type I : weak injection (0 < K < KI)
The streamwise shear evaluated at the plate surface remains non-zero in this regime,

ranging from the Blasius value far away from the injection slot (ζ̂ ≫ 1) to a minimum

at the centreline of the injection region (ζ̂ = 0). There is a a slight thickening of the

boundary layer on approaching ζ̂ = 0, but otherwise the injection flow does not dominate
the response. This is seen in figures 2(a,b), for K = 0.5 and ζ0 = 20, which show (a)
the streamwise velocity U and (b) the (scaled perturbation) vorticity Θ̃; both of these
quantities are only influenced in the near-wall region.
The effects of wall transpiration in this case are mostly confined to the thin region

of vorticity adjacent to the plate surface, where η = O(1). This level of blowing is not
sufficient to push the layer away from the plate surface, but it does lead to a slow variation
of the layer’s properties over the long (ζ0 ≫ 1) lengthscale. Any blowing-induced increase
in the thickness of this layer near the plate means a reduction of the streamwise mass
flux, and this deficit must be compensated for by an increase in the mass transferred
to the bulk flow via V and W , as defined by (2.3). This displacement induced flow is
in addition to the extra mass contributed by the blowing through the plate surface. In
terms of the computational formulation, this means that as K increases, so must the
magnitude of A, as defined by (2.8).
This flow response is obtained for 0 < K < KI , and we demonstrate in section 4.1

below that KI ≈ 0.876, i.e. the same critical injection rate at which the two-dimensional
solution is ‘blown off’. At injection rates larger than KI we move instead to a moderate
injection regime in which the effects of blowing become more prominent.
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Type II : moderate injection (KI < K < KII)
At values of the transpiration amplitude greater thanKI but less than a further critical

value, which we label KII the flow response in the injection region (ζ̂ < 1) changes. In
the classical two-dimensional problem, there are no solutions for this rate of injection.
However, for the boundary-region equations, a solution is obtained, albeit with very low
shear at the plate surface near ζ = 0.
In this regime there is a vorticity component Θ̃, which is displaced away from the

plate boundary (η = 0) and near ζ̂ = 0 a low-speed streak develops, within which U ≈ 0.
These features can be seen in figures 2(c,d), where the low-speed streak is visible in (c),
with an associated displacement of vorticity away from the wall in (d). For the type I

solutions described above, the slight thickening of the layer near to ζ̂ = 0 does not grow
as the injection slot width ζ0 is increased. However, in this type II regime, a widening
slot width leads to an increasingly prominent low-speed streak. The presence of this low-
speed region leads to a reduction in the streamwise mass flux, which is compensated for
by an increased radial flow into the far field, as described by (2.8).
The low streamwise speeds within the streak are separated from the higher speed outer

flow by a displaced shear layer, which appears to have approximately constant curvature
near to the centreline (ζ̂ = 0). The asymptotic theory presented below in section 4.2
points to KII ≈ 1.95, with the exact value determined in terms of the precise spanwise
form of the injection profile.

Type III: strong injection (K > KII)
At sufficiently large injection amplitudesK > KII , increasing the width of the injection

slot results in an even more prominent low-speed streak. An example of this regime is
shown in figures 2(e,f) where a dominant large low-speed streak is observed that is in
fact wider than the injection slot width (which ends at ζ/ζ0 ≈ 1). The low-speed region
appears to be circular, with a radius of O(ζ0); we confirm this scaling in a subsequent
asymptotic description below. A shear layer delineates the edge of this low-speed streak.
Below this shear layer the streamwise velocity is small (U ≈ 0), whilst above it free stream
conditions are found with U ≈ 1. There is a non-zero vorticity perturbation associated
with the shear layer, but it is not visible on the contour scale shown in figure 2(f).
In the absence of streamwise motion inside the streak, any mass transfer across the

plate surface must exit via the surrounding shear layer. As we will demonstrate in section
4.2, we are able to provide a solution for the mass transfer through the shear layer as
a function of its radius. By matching this mass flux through the shear layer (out of the
streak) to that entering the streak via the injection slot, we can predict the streak radius.

4. Asymptotic descriptions for wide injection slots

Below we present asymptotic descriptions (guided by the numerical results of the
previous section) for each of the three nonlinear flow states for increasing injection slot
widths (ζ0 ≫ 1). In this discussion we address weak and strong injection first, leaving
the (more complex) intermediate moderate-injection case for last.

4.1. Type I: weak injection (K < KI)

Despite the presence of injection, a viscous layer persists across the injection-slot width,
leading to an inner region that is spanned by η = O(1) and ζ = O(ζ0), where ζ0 is the
lateral extent of the injection region defined by (2.5). To leading order this layer has no
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(solid) for K = 0.2 and K = 0.6, as determined by solution of (2.4). For comparison the shear
distribution predicted by the parabolic system (4.3), shown as the thicker line.

crossflow. To describe this region we again use ζ̂ = ζ/ζ0, together with

U(ζ, η; ζ0) = U0(ζ̂ , η) + · · · , Φ(ζ, η; ζ0) = Φ0(ζ̂ , η) + · · · , (4.1a)

Ψ(ζ, η; ζ0) = ζ0ζ̂ Ψ0(ζ̂, η) + · · · , Θ(ζ, η; ζ0) = ζ0ζ̂ Θ0(ζ̂ , η) + · · · . (4.1b)

In the absence of any crossflow W ≈ 0, as defined by (2.3), a solution exists in the form

(U0,Φ0,Ψ0,Θ0) = (UI ,ΦI , UI , UIη) , (4.2)

for which (2.4) reduces at leading order to

UI = ΦIη + ζ̂UI ζ̂ , (4.3a)

UIηη = −ΦIUIη − ζ̂UIUI ζ̂ . (4.3b)

If UI > 0 for all η > 0 this solution can be extended from ζ̂ ≫ 1 towards ζ̂ = 0 by
parabolic marching, subject to the conditions

UI = 0 , ΦI = Φtransp , on η = 0 , (4.3c)

UI → 1 , as η → ∞ , (4.3d)

where the surface transpiration Φtransp is defined implicitly by (2.5). The starting state

for ζ̂ ≫ 1 is simply the Blasius solution.
Figure 3 shows the shear distribution along the plate, for solutions of the ‘full’ system

(2.4) with injection profiles given by (2.5) where γ = 20, ζ0 = 20, 40 and K = 0.2, 0.6.
For comparison, the leading order ζ0 ≫ 1 prediction provided by parabolically marching
(4.3) is also shown. The full numerical data is consistent with and approaching the ζ0 ≫ 1
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prediction, apart from within a decreasing inner region around ζ̂ = 0. We will address
this ζ̂ ≪ 1 behaviour separately in the Appendix, where there is firm evidence that
three-dimensional eigensolutions play a role in this region.

In general, the parabolic solution terminates at ζ̂ = 0 with a solution that is consistent
with the classical two-dimensional states described in section 1, which only exist for
K . 0.876. Marching of (4.3) for K & 0.876 leads to a singular response at a finite value

of ζ̂, associated with a zero of U0η(η = 0)

For η ≫ 1, away from the parabolic layer, the far-field conditions provide

Φ0 ∼ η + δB + δtransp(ζ̂) , (4.4)

which is a statement regarding the vertical velocity induced in the outer flow due to the
presence of the parabolic layer. Here δB is the displacement associated with the classical
Blasius solution in the absence of transpiration (it is approximately -1.2). The imposition
of a wall transpiration over a finite spanwise region also induces a spanwise varying
displacement that we denoted above as δtransp(ζ̂). If K = 0 then the tilde quantities in
(2.6) are zero and δtransp = 0, but for general values of K, δtransp 6= 0 and is determined
by spanwise marching of the parabolic-layer equations.

We now consider an outer inviscid region spanned by η = ζ0η̂ and ζ = ζ0ζ̂; this is

an outer region of the boundary-region equations (2.4), and as such is O(x∗Re
−1/2
x ζ0)

on the dimensional transverse and spanwise scales. In this region, we can look for the
perturbation to an underlying Blasius state

Φ = ζ0η̂ + δB + φ(ζ̂ , η̂) , (4.5)

where φ = O(1) in order to match with the δtransp(ζ̂) induced by the parabolic solution
and ζ0η̂ + δB is simply the outer limit of the Blasius solution. Numerical evidence from
the full solution suggests that both U and Θ remain o(ζ−2

0 ), which leaves a harmonic
problem for φ,

∇̂2φ = 0 , (4.6)

subject to

φ(ζ̂ , η̂ = 0) = δtransp(ζ̂) . (4.7)

This is effectively determining the outer flow from the vertical mass transport induced
in the parabolic layer by the presence of the surface transpiration.

The solution to the outer problem can now be given via a standard Green’s function
approach

φ(ζ̂ , η̂) =
1

π

∫ +∞

z=−∞

δtransp(z) η̂

η̂2 + (ζ̂ − z)2
dz . (4.8)

In the far field we know from (2.8) that

φ ∼ Aη

ζ2 + η2
=

Âη̂

ζ̂2 + η̂2
, (4.9)

where A = ζ0Â; similar expressions are possible for the far-field contribution to the Ψ
component. Given this far field behaviour, the total radial mass flux (or more striclty
because this is in the plane, an area flux) due to spanwise variation at infinity is Aπ,
whereas the flux from the parabolic layer induced by the surface injection is Mζ0, where
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M =

∫

∞

−∞

δtransp(ζ̂) dζ̂. (4.10a)

Mass conservation therefore allows us to predict the coefficient A in (2.8) must be

A =
M

π
ζ0 . (4.10b)

In figure 4 we show a comparison of the numerically computed values of A with the
asymptotic prediction provided by (4.10). For this comparison we perform the parabolic
marching of (4.3), from an initial state of a Blasius profile, to determine δtransp via (4.4).
This allows for computation of the transverse mass flux induced by this viscous response
via the integral definition of M in (4.10a). Excellent agreement with the asymptotic
description is found (confirming the linear dependency of A on ζ0), but the approach fails
at K = KI ≈ 0.876. It is also clear that the singular response of the parabolic solution
associated with a reversal of the cross flow at the critical injection rate of K ≈ 0.876 is
strongly mitigated by finite-ζ0 effects.

4.2. Type III: strong injection (K > KII)

In this regime there is a sizeable low-speed streak associated with injection velocities
larger than a critical value of KII ; this value is determined as part of the asymptotic
description as ζ0 → ∞ given below. The flow field in this regime shares the qualitative
features of figures 2(e,f), with the spatial extent of the streak becoming large as the
injection-slot width (ζ0) is increased.
We seek to capture the details of this streak using the coordinates η̂ = η/ζ0 and
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ζ̂ = ζ/ζ0, and the numerical evidence of section 3 suggests the following scalings

U(ζ, η; ζ0) = o(ζ−1

0 ) + · · · , Φ(ζ, η; ζ0) = Φ∗(ζ̂ , η̂) + · · · , (4.11a)

Ψ(ζ, η; ζ0) = Ψ∗(ζ̂, η̂) + · · · , Θ(ζ, η; ζ0) = ζ−1

0 Θ∗(ζ̂ , η̂) + · · · . (4.11b)

This leads to the following leading-order system within the streak:

Φ∗

η̂ = −Ψ∗

ζ̂
, (4.12a)

Θ∗ = Ψ∗

η̂ − Φ∗

ζ̂
, (4.12b)

Φ∗Θ∗

η̂ +Ψ∗Θ∗

ζ̂
= 0 . (4.12c)

We can usefully re-pose this problem in terms of a streamfunction

G(ζ, η) = ζ0G
∗(ζ̂ , η̂) + · · · , (4.13)

such that

Ψ∗ = −G∗

η̂ , Φ∗ = G∗

ζ̂
. (4.14)

This leads to the usual Poisson formulation for a two-dimensional, inviscid, but rotational,
incompressible flow, where Θ∗ is the vorticity. Using (2.3), U ≈ 0 implies that (to leading
order) W = G∗

η̂/
√
2 is the spanwise velocity, whilst V = −G∗

ζ̂
/
√
2 is the transverse

velocity.
At the boundary, G∗(ζ̂ , η̂ = 0) = G∗

w(ζ̂), where G
∗

w effectively defines the scaled mass
flux (in the plane, per unit distance downstream) through the injection slot, via

G∗

w(ζ̂) = −
√
2

∫ ζ̂

0

Vtransp dζ̂ . (4.15)

The streak exists within a large semi-circular region, of radius r = (η2 + ζ2)1/2 = rs;

in terms of the scaled coordinates, this becomes r̂ = (η̂2 + ζ̂2)1/2 = r̂s, where rs = ζ0r̂s.
Outside of the streak region (and of the circular shear layer discussed below) the response
is irrotational with U ≡ 1 and Θ ≡ 0 (to leading order), along with

Φ = ζ0η̂ +
Aη̂

ζ0(η̂2 + ζ̂2)
+O(ζ−2

0 ), Ψ = ζ0ζ̂ +
Aζ̂

ζ0(η̂2 + ζ̂2)
+O(ζ−2

0 ) , (4.16)

which describe the underlying far field (uniform flow) solution, plus the algebraic decay
(with amplitude A) of the induced three-dimensional response. In order to match with
the solution inside the streak, we must have that both Φ and Ψ are o(ζ0), which leads to

A = −ζ20 r̂2s . (4.17)

This partially confirms the semi-circular shape of the streak, although we still require
the connecting solution through the shear layer.
In the shear layer at the edge of the streak, we employ a new radial coordinate R =

r − rs, and angle θ, measured from the plate. Assuming all flow quantities are O(1) in
this region, we obtain

2U = ΦR sin θ +ΨR cos θ , (4.18a)

Θ = ΨR sin θ − ΦR cos θ , (4.18b)

URR = −ΦUR sin θ −ΨUR cos θ , (4.18c)

ΘRR = −ΦΘR sin θ −ΨΘR cos θ − 2ΘU . (4.18d)

The final equation would have contained two (solitary) O(ζ0) terms, but these cancel if
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the streak is semi-circular in form (confirming our earlier assertion). Boundary conditions
for the semi-circular shear layer are U → 0, Θ → 0 as R → −∞, and U → 1, Θ → 0
along with Φ → 2R sin θ and Ψ → 2R cos θ as R→ ∞.
On reformulating in terms of the radial flow contribution in the cross sectional plane,

F = Φsin θ +Ψcos θ , (4.19a)

we obtain

FRRR + FFRR = 0 , (4.19b)

to be solved subject to F (0) = 0 (associated with an arbitrary O(1) translation of the
origin), F ′(∞) → 2 as R → ∞ and F ′(−∞) → 0 as R → −∞. This is equivalent to
the standard planar mixing-layer solution, albeit in terms of a radial coordinate, see for
example (Schlichting & Gersten 2003, p. 667). Numerical solution of this free shear layer
indicates that F (−∞) ≈ −1.238.
This leaves the vorticity term Θ to be determined, together with the individual con-

tributions of Φ and Ψ to the now known F . The Θ equation is then

ΘR + FΘ = constant . (4.19c)

Evaluation in the far field shows the constant to be zero, and a solution is therefore

Θ = C1 FRR , (4.19d)

where C1 is a constant.
The function F is the radial velocity contribution from Φ and Ψ (albeit with F < 0
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corresponding to radial outflow). In terms of the (scaled) streamfunction describing the
flow inside the streak, this same radial component is

1

r̂

∂G∗

∂θ
. (4.20)

Matching with the radial flow through the shear layer, the solution in the streak requires
the condition

1

r̂s

∂G∗

∂θ

∣

∣

∣

∣

∣

r̂=r̂s

= −F (−∞) , (4.21)

or, as F (−∞) is independent of θ:

G∗

∣

∣

∣

r̂=r̂s
= constant− r̂sF (−∞)θ . (4.22)

For a symmetric injection with no mass flux across the centreline ζ̂ = 0 (θ = π/2)

G∗(r̂s, θ) = −r̂sF (−∞)(θ − π/2) . (4.23)

Evaluation on the plate (θ = 0) and requiring that the mass flux through the injection
slot matches with that through the shear layer at the outer extent of the streak, requires

r̂sF (−∞)
π

2
= G∗

w(ζ̂ = r̂s) . (4.24)

Failure of this condition would mean a discontinuity in the streamfunction at O(ζ0) as
the semi-circular shear layer connects with the plate boundary layer.
The constraint (4.24) is a condition for the (scaled) radius of the streak, r̂s. For suffi-

ciently large values of γ, (2.5b) is well approximated by −Kζ̂/
√
2 for ζ̂ < 1 and −K/

√
2

for ζ̂ ≥ 1. Hence (4.15) yields G∗

w(ζ̂ = r̂s) ≈ −K, on assuming that r̂s > 1, leaving

rs = ζ0r̂s = − 2Kζ0
πF (−∞)

≈ 0.514Kζ0 . (4.25a)

Hence (4.17) provides

A ∼ − 4K2ζ20
π2F (−∞)2

≈ −0.264K2ζ20 . (4.25b)

This argument only applies if r̂s > 1. If r̂s < 1, then G∗

w(ζ̂ = r̂s) ≈ −Kr̂s, in which
case the radius of the streak is eliminated from the mass flux constraint (4.24), and
the condition cannot (in general) be satisfied. So r̂s = rs/ζ0 = 1 serves to identify the
critical injection velocity (KII) for the development of this flow regime. Setting r̂s = 1
and K = KII in (4.25a) provides

KII = −πF (−∞)

2
≈ 1.95 . (4.26)

In figure 5 we show the predicted unscaled streak radius (rs) and far-field constantA for
increasing widths of the injection slot (ζ0) with a fixed injection velocity K > KII . The
agreement is clear, although there is evidence of a higher order O(1) contribution to both
rs and A that we have made no attempt to determine asymptotically. For this comparison
we have chosen to measure the streak radius by determining the value of rs such that
U(ζ = 0, η = rs) = 0.5, being the mid-way value between the U ≈ 0 in the streak and
U ≈ 1 in the far field. As a final point it is worth noting that the large magnitude of
A = O(ζ20 ) in this regime makes calculations challenging, in particular the imposition of
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for the type III solutions that exist for K > 1.95 and large ζ0.

the conditions (2.8) is crucial. As A increases, a larger computational domain is required
to accurately reproduce the leading-order (algebraic) asymptotic behaviour in the far

field. For figure 5 (for example), we use a domain of size ζ̂ < 20, η < 320 with 1201×1201
nodes for ζ0 = 16. Less challenging parameter values can be resolved with smaller domains
and fewer nodes.

4.3. Type II: moderate injection (KI < K < KII)

This regime provides a transition between states of type I and III, and is therefore
expected to share some of the characteristics of both, but as a consequence has a rather
more complex structure, leading to a less complete asymptotic (global) description.
The dominant feature at moderate injection velocities is a low-speed streak, as in

the strong injection regime, but in this case the streak is not semi-circular. Numerical
evidence, as shown in figure 2(c) suggests that the streak’s edge is approximately circular
only over a finite range of angle rather than extending all the way to the plate boundary.
The shear layer deviates from being circular at an angle that is dependent on the injection
rate K. Figure 6 shows the contour U(ζ, η) = 0.5 (as a reasonable proxy for the shear
layer location that bounds the low-speed streak) for an injection slot width of ζ0 =
10 and injection rates of K = 1, 1.2, ..., 1.8. As can be seen from the figure, as K is
increased towards the critical value of KII ≈ 1.95 the circular portion of the shear
layer increases until it approximates the quarter circle predicted in the leading-order
asymptotic description of the type III regime.
In this type II regime, the size of the streak is smaller than the width of the injection

region (that is, rs < ζ0). Outside of the streak but still near to the plate, the flow has the
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characteristics of an attached η = O(1) viscous layer similar to that found in the type I
states, as described by (4.3). An example profile of Ψ in this layer adjacent to the plate
(but outside the streak) is shown in figure 7(a) at ζ = 0.7ζ0 (with ζ0 = 40) for K = 1.2
(type II) and for comparison we also show K = 0.2 (type I). Away from the injection
region, (ζ ≫ ζ0) the solution in this layer decays to the Blasius state, but how this layer
connects to the displaced shear layer in the injection region (ζ < ζ0) is non-trivial.

As noted in our discussion of the type I states, the parabolic on-plate layer (4.3) when
marched in the spanwise coordinate to the centreline ζ = 0 recovers the classical two-
dimensional results described in section 1. Therefore when K > KI (as is the case in this
type II regime) there is no such terminating solution at ζ = 0 and (4.3) breaks down with
a singularity in displacement thickness at a finite spanwise location. It is tempting to
assume that the displaced shear layer and the layer adjacent to the plate connect via this
steady separation, but there is little evidence to support this view in the full numerical
results. Furthermore, the solution of (4.3) assumes that the far-field (η ≫ 1) condition is
Ψ0 → 1, which is the condition for no cross flow at O(ζ0) above this layer. This is true for
type I solutions, but the displacement associated with the streak makes this assumption
invalid in type II states.

Figure 7(a) shows the profile for Ψ(ζ = 0.7ζ0, η)/ζ (which is Ψ0(ζ̂ = 0.7, η) in (4.3)
to leading order) for ζ0 = 40 and K = 0.2, 1.2. For K = 0.2, the far-field value is
approximately unity as expected for this type I state, whereas there is clearly a significant
difference from unity for the type II state of K = 1.2. In both cases U ≈ 1 away from the
plate, so this deviation of Ψ/ζ from unity is indicative of the importance of cross flow at
the edge of this layer in the type II regime. This is also confirmed in figure 7(b), which
shows Ψ/ζ at a fixed value of η = 8.

A solution to the parabolic problem (4.3) is therefore still relevant to the region outside
the streak but adjacent to the plate in this case, but a more general external condition of
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Ψ0 → Ψ∞(ζ̂) is more appropriate (rather than Ψ0 → 1 as applied for type I solutions).
This distribution of cross-flow velocity, Ψ∞, will be a function of the streak size and
shape. Similarly the streak size and shape will be undetermined until the mass flux into
it from the parabolic layer can be determined. Combining these observations suggests
that an interactive approach (albeit within the confines of the boundary-region equations)
is required, which couples all three regions (the viscous layer on the plate, the streak and
the region outside both) together at leading order; this in itself would be a challenging
computation.

5. Discussion

We have presented three-dimensional self-similar solutions to the ‘boundary-region
equations’. These solutions correspond to injection through a slot of dimensional width
ζ0(2x

∗ν∗/U∗

∞
)1/2 and dimensional injection velocity K(U∗

∞
ν∗/x∗)1/2, where x∗ is the

distance from the leading edge of a flat plate, placed in a fluid of vanishing kinematic
viscosity ν∗ with a free stream speed of U∗

∞
. Outside the injection slot the plate is treated

as impermeable, and we thus recover the classical injection-free solutions near the plate in
the far field. This choice of spatial dependence for the injection velocity and the slot width
allows for solutions that are self-similar in the downstream coordinate. A more general
downstream variations could be tackled in a similar manner, by parabolic marching in
the downstream direction.
For the two-dimensional case it is known that the self-similar states cease to exist for

K & 0.876, at which point the boundary layer is ‘blown off’ the plate surface. To continue
these two-dimensional states beyond this value requires an interacting formulation outside
the traditional boundary-layer equations. However, in the context of the boundary-region
equations considered herein, solutions continue to exist with no evidence of a critical ‘blow
off’ event.
When the width of the injection slot (ζ0) becomes large, three distinct flow regimes

develop delineated by the magnitude of the blowing. The main (global) features of these
three regimes have been described asymptotically, with good quantitative agreement for
the bulk flow features. If the blowing parameter K . 0.876 then in the injection region
we recover a three-dimensional analogue of the corresponding classical two-dimensional
state. This state can be determined by parabolic marching from the far field in the
spanwise direction into the injection region. However, even on approaching the centreline
of the injection slot we typically do not fully recover the quantitative results of the
classical approach, owing to a spatial instability (discussed in the Appendix), which
dominates close to the centreline.
At larger values of the injection parameter, K, solutions develop a low-speed streak at

the centreline of the injection region. For increasing K the size of the streak increases,
until for K & 1.95 the streak becomes semi-circular and of a radius that is greater
than the width of the injection slot. In this regime the streak is of dimensional radius
0.514K ζ0 (2x

∗ν∗/U∗

∞
)1/2.

The asymptotic descriptions of the low-speed streak that we have provided are robust
to changes in the details of the injection profile, in the sense that any different choice
for (2.5) could be approached in the same manner. In physical terms, the asymptotic
development for large injection widths is dominated by the role of mass flux through the
plate and a requirement for this to to be balanced by the flux across the shear layer that
bounds the streak. For example, the type III states balance the influx (into the streak) of
Kζ0 with the outflux of F (−∞)πrs/2, where F (−∞) is the (constant) transpiration rate
into the shear layer, (4.19b), and πrs/2 is simply the outer circumference of the streak (in
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Figure 8. The behaviour for large injection velocities (increasingK) over a fixed slot (half-)width
that is comparable to the two-dimensional Blasius boundary layer thickness. Results are shown
for a wall transpiration (2.5), with ζ0 = 1, γ = 20 and (a,b)K = 8 (c,d)K = 16 and (e,f)K = 32.
The left-hand column shows contours of streamwise velocity U , whilst the right-hand column
shows the perturbation vorticity component ζ0Θ̃ from (2.6) together with the corresponding
particle path lines in the ζ-η plane. As specified in the key, only a sub-range is displayed for

contours of Θ̃, to avoid the large contribution from the edge of the injection slot at ζ̂ = 1, η = 0.

the quarter plane η, ζ > 0). This condition determines the streak radius rs, as described
by (4.25a). A change of the injection profile from (2.5) to something more complicated
would not alter this argument. For example, an alternative transpiration profile with zero
mean flux may be considered, with injection of magnitudeK for ζ ∈ [0, ζ0] then suction of
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the same magnitude for ζ ∈ [ζ0, 2ζ0]. The same asymptotic argument applies with little
change and predicts that the streak radius is now rs = 4Kζ0/(F (−∞)π + 2K). Note
that in this case, the rescaled radius r̂s = rs/ζ0 no longer increases without bound for
increasing K and instead becomes saturated at r̂s = 2; that is, the streak size becomes
bounded by the end of the suction region.
The recent work of van Dommelen & Yapalparvi (2014) examined two-dimensional

boundary layers influenced by weak curvature. They showed that a Goldstein-singularity
(Goldstein 1948) could be regularised by the inclusion of a spanwise-periodic blowing
region. Key to their work was the inclusion of short-scale spanwise effects, motivated by
the experimental use of microjets, and achieved through a curvature affected version of
the boundary-region equations. Wall curvature ensured that the blowing region induced
a (Görtler) vortex, which in some cases can persist downstream to the location at which
separation would be found in the absence of blowing. The imposition of spanwise peri-
odicity is important in the separation context of van Dommelen & Yapalparvi (2014),
because allowing the flow to return to being two-dimensional in the far field (ζ ≫ 1)
will recover the singularity in that region. Furthermore in the presence of spanwise dif-
fusion, a singularity in the far-field means that parabolic marching must terminate at
all spanwise locations. Our focus is the self-similar ‘blow off’ singularity rather than in-
hibiting separation. We have therefore removed the requirement for curvature, addressed
a uniform external flow (Blasius), extended the blowing region to be at all streamwise
locations, and relaxed the spanwise-periodic nature of the blowing to being an isolated
region. Nevertheless, our results support those of van Dommelen & Yapalparvi (2014)
because they too remain unseparated, in the sense that there is no singularity.
The classical ‘blow off’ problem is only loosely related to the steady separation found in

the analogous streamwise-developing problem, see for example Catherall et al. (1965), but
our results show that short-scale spanwise diffusion can remove the singularity present in
the two-dimensional approach. Our results show significant regions of virtually stagnant
streamwise flow; such states were found to have very low values of wall shear for both
large spanwise-width blowing regions and large blowing rates. In this regard, we conclude
by noting that more complex streak-like structures are possible for strong blowing at fixed
injection widths. In figure 8 we repeat the measures employed in figure 2, but this time
for fixed modest injection width ζ0 = 1 and increasing injection amplitude K = 8, 16, 32,
for the pairs of figures (a,b), (c,d) and (e,f) respectively. In the classical literature this
is the ‘massive blowing’ or ‘blowhard’ (Cole & Aroesty 1968) limit, and again we see
no evidence of a critical ‘blow off’, but rather a streak that is largely of O(1) (in the
ζ-scale) width and of increasing length in the transverse direction (η). The exception
is the uppermost portion of the streak, which is associated with a strong and localised
patch of vorticity, as measured by the contours of the perturbation vorticity term Θ̃. We
have made no attempt at providing an asymptotic description for K ≫ 1, but numerical
results suggest that the height of the streak increases approximately linearly with K
whilst there is some evidence of a slow growth in the size of the vorticity patch at the
top of the streak. Again there is no evidence of (streamwise) flow reversal and increased
blowing appears to be related directly to very small (but still positive) shear at the base
of the streak.

Appendix A. The role of spatial eigenmodes for ζ̂ ≪ 1

Figure 3 shows a comparison of the (streamwise) shear distributions on the plate for
ζ0 = 20, 40, and K = 0.2, 0.6 < KI , which is in the weak injection regime. For increasing
ζ0 there is good quantitative evidence of an approach to the leading-order (ζ0 ≫ 1)
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asymptotic theory provided by the parabolic layer (4.3). But there remains a marked

deviation away from the predicted behaviour for small values of ζ̂. This feature can be
observed in figure 3 as a rapid drop in the wall shear values for ζ̂ . 0.2 when compared
to the asymptotic prediction.
The physical origin of this behaviour can be clarified by allowing for the spatial de-

velopment of a weak crossflow on approaching the centreline (ζ̂ = 0). To achieve this we
again look for a solution to (2.4) in the form of (4.1). In section 4.1 we sought solutions
with no crossflow, which required U0 = Ψ0 and Θ0 = U0η in (4.1). However, here we
consider the spatial development of a weak crossflow, of O(ǫ) say, by modifying (4.2) as
follows:

U0 = UI(ζ̂ , η) + ǫu(ζ̂, η) , (A 1)

Φ0 = ΦI(ζ̂ , η) + ǫϕ(ζ̂, η) , (A 2)

Ψ0 = UI(ζ̂ , η) + ǫψ(ζ̂, η) , (A 3)

Θ0 = UIη(ζ̂ , η) + ǫϑ(ζ̂ , η) . (A 4)

If ǫ = 0, then we recover (4.3) and the solution of section 4.1, which has no crossflow
velocity. However, if u 6= ψ the O(ǫ) perturbations will in general have an associated
crossflow.
For ǫ ≪ 1, a linearised system can be easily obtained for (u, ϕ, ψ, ϑ), and for ζ̂ ≪ 1,

solutions exist in the form
(

u(ζ̂, η), ϕ(ζ̂ , η), ψ(ζ̂ , η), ϑ(ζ̂ , η)
)

= ζ̂λ (u0(η), ϕ0(η), ψ0(η), ϑ0(η)) . (A 5)

This yields an eigenvalue problem for λ = λr + iλi, and clearly if λr < 0 we expect
growth of this perturbation as ζ̂ → 0. In practice this growth is not unbounded, but its
presence points to a need to reintroduce spanwise diffusive effects near to the centreline,
even for large injection slot widths.
We have solved the eigenvalue problem for λ over a range of K via a standard finite-

difference formulation together with an application of the QZ algorithm. This shows that
for K & −0.45, there is a single eigenvalue with λr < 0, and the crossflow-free solution
obtained from (4.3) is susceptible to the growth of these modes in a relatively small

region around the centreline ζ̂ = 0.
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