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Localised streak solutions for a Blasius
boundary layer
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Streaks are a common feature of disturbed boundary-layer flows. They play a central
role in transient growth mechanisms and are a building block of self-sustained
structures. Most theoretical work has focused on streaks that are periodic in the
spanwise direction, but in this work we consider a single spatially localised streak
embedded into a Blasius boundary layer. For small streak amplitudes, we show the
perturbation can be described in terms of a set of eigenmodes that correspond to
an isolated streak/roll structure. These modes are new, and arise from a bi-global
eigenvalue calculation; they decay algebraically downstream and may be viewed
as the natural three-dimensional extension of the classical two-dimensional Libby
& Fox (J. Fluid Mech., vol. 17 (3), 1963, pp. 433–449) solutions. Despite their
bi-global nature, we show that a subset of these eigenmodes (including the slowest
decaying) is fundamentally related to the solutions first presented by Luchini
(J. Fluid Mech., vol. 327, 1996, pp. 101–116), as derived for spanwise-periodic
disturbances (at small spanwise wavenumber). This surprising connection is made
by an analysis of the far-field decay of the bi-global state. We also address the
fully non-parallel downstream development of nonlinear streaks, confirming that
the aforementioned eigenmodes are recovered as the streak/roll decays downstream.
Encouraging comparisons are made with available experimental data.

Key words: boundary layers, instability

1. Introduction and formulation

In a Blasius boundary layer (and similar shear flows) it is well known that
streamwise vorticity is highly efficient at generating streamwise streaks. At high
Reynolds numbers, the asymptotically weak ‘roll’ motion associated with streamwise
vorticity moves low-speed fluid from the wall into regions of higher streamwise
velocity, with a return flow of higher-speed fluid towards the wall. This has been
recognised for some time as a source of O(1) low/high-speed streaks aligned with the
free-stream direction. In the non-parallel context of the Blasius boundary layer, the
in-plane roll motion and the downstream streak remain fully coupled, and herein we
use the term ‘streak’ to indicate this three-dimensional disturbance on an otherwise
two-dimensional Blasius boundary layer.

† Email address for correspondence: richard.e.hewitt@manchester.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

44
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

he
 U

ni
ve

rs
ity

 o
f M

an
ch

es
te

r 
Li

br
ar

y,
 o

n 
12

 Ju
n 

20
19

 a
t 1

0:
08

:1
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

http://orcid.org/0000-0003-3056-1346
mailto:richard.e.hewitt@manchester.ac.uk
https://doi.org/10.1017/jfm.2018.440
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


886 R. E. Hewitt and P. W. Duck

The role of streamwise streaks/vortices in transient growth has been extensively
studied, see for example the discussion of Schmid & Henningson (2012). For
boundary layers it is known (Andersson, Berggren & Henningson 1999) that the
greatest amplification is associated with streaks that have spanwise scales comparable
to the transverse boundary-layer thickness. The streak states that arise (Andersson
et al. 2001) provide a primary structure on which secondary instabilities arise as the
amplitude of the streak is increased. Of course the Blasius boundary layer is also
unstable via the classical route of Tollmien–Schlichting (TS) waves, for sufficiently
large Reynolds numbers. There is also evidence that artificially forcing streak states
can stabilise a boundary layer to TS waves (Cossu & Brandt 2002), so long as the
streak amplitude remains below that required for a secondary instability.

Much of the analysis on ‘streaky’ boundary layers assumes periodicity in the
spanwise direction. There are obviously some computational advantages to this
assumption as well as empirical evidence of the importance of such states in flows
disturbed by free-stream turbulence (for example). There are also a number of
experimental investigations in which the disturbance is driven by spanwise-periodic
distributions of wall roughness, injection or suction; see for example Bakchinov et al.
(1995) and White (2002). A notable exception is the experimental work of Asai,
Minagawa & Nishioka (2002), in which a single streak perturbation is induced as a
primary state, with the secondary instability induced via small harmonic oscillations
imposed by injection through holes in the boundary surface.

Our focus in this work is spatially localised (rather than periodic) streaks, driven
by wall forcing over a finite spanwise and streamwise extent; we begin with a
theoretical linearised description before presenting analogous nonlinear streak states.
Before developing our approach it is instructive to review some related theoretical
results.

Linearised perturbations to a Blasius boundary layer have been considered in many
contexts. Of particular relevance is the work of Libby & Fox (1963), which identified
a set of two-dimensional (steady) eigenmodes that exist on a Blasius base state. The
Libby & Fox modes are governed by the two-dimensional leading-order boundary-
layer equation

ΦYΦYx −ΦxΦYY =ΦYYY, (1.1)

where Φ(x, Y) is a streamfunction, x is a downstream coordinate and Y is a rescaled
boundary-layer coordinate. A solution exists in the form

Φ(x, y)= (2x)1/2{F(η)+ εf (x, η)}, with η= Y/(2x)1/2, (1.2)

which then provides an evolution equation for perturbations f of amplitude ε to the
Blasius base state defined by F, which satisfies

F′′′(η)+ F(η)F′′(η)= 0, F(0)= F′(0)= 0, F′(∞)= 1. (1.3a−c)

The perturbation f (x, η) represents a downstream evolving (linear, if ε � 1)
perturbation. As shown by Libby & Fox (1963), a linearised solution for f exists as a
superposition of eigenmodes. These modal solutions take the form of f (x, η)= x−σ f̄ (η),
giving rise to a one-dimensional eigenvalue problem for the spatial (algebraic) decay
‘rate’ σ . The least-damped mode has σ = 1, for which an analytical solution was
previously noted in the work of Stewartson (1957).

A closely related approach was later taken in the work of Luchini (1996) albeit
with a different emphasis. The focus of this later work is on three-dimensional
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Localised streak solutions for a Blasius boundary layer 887

modes, initially formulated for spanwise length scales that are comparable to the
boundary-layer thickness, although a large spanwise wavelength limit is then taken.
The goal was to gain insight into the transient growth mechanism associated with
streak perturbations. The follow-up work of Luchini (2000) went on to consider
disturbances with a spanwise wavelength comparable to the boundary-layer thickness
(including so-called optimal disturbances).

To place this three-dimensional formulation into a specific context, we consider
a semi-infinite flat plate aligned with an oncoming incompressible, uniform flow
of speed U∗

∞
. An arbitrary choice of reference length scale, L∗, allows for a

non-dimensional Cartesian coordinate system (L∗x, L∗y, L∗z) aligned with the leading
edge of the plate at x= 0, such that y= 0, x> 0 defines the plate surface. To capture
short spanwise scales typical of streaks we rescale in the (y, z) plane according to

(Y, Z)= Re1/2(y, z). (1.4)

Here Re=U∗
∞

L∗/ν∗ (for kinematic viscosity ν∗) is a global Reynolds number based on
the chosen length scale. The corresponding high Reynolds number flow field (assumed
to be steady) is

u= Û(x, Y, Z)+ · · · , (v,w)= Re−1/2(V̂(x, Y, Z), Ŵ(x, Y, Z))+ · · · , (1.5a,b)

with pressure
p= Re−1/2p̂(x)+ Re−1P̂(x, Y, Z)+ · · · . (1.5c)

For large Reynolds number the solution is therefore governed by

ÛÛx + V̂ÛY + ŴÛZ = ÛYY + ÛZZ, (1.6a)
ÛV̂x + V̂V̂Y + ŴV̂Z =−P̂Y + V̂YY + V̂ZZ, (1.6b)

ÛŴx + V̂ŴY + ŴŴZ =−P̂Z + ŴYY + ŴZZ, (1.6c)
Ûx + V̂Y + ŴZ = 0. (1.6d)

This system is often referred to as the boundary-region equations, terminology that
is attributed to Kemp (1951). It is to be solved subject to no-slip constraints on
the plate (Y = 0) and matching to a uniform free stream in the far field. It has
been previously employed in discussions of (spanwise-periodic) streaks (Higuera
& Vega 2009), their transient growth (Luchini 1996, 2000; Andersson et al. 1999)
and their self-sustained interaction with travelling waves (Hall & Sherwin 2010).
Indeed, comparable governing equations have been employed in many other less
directly related applications (including Rubin 1966; Hall 1988; Dhanak & Duck
1997; Goldstein et al. 2016; Hewitt, Duck & Williams 2017; Williams & Hewitt
2017).

To tackle (1.6) Luchini (1996) firstly assumed periodicity in Z for a linear
perturbation of the form (u(x, Y), v(x, Y), w(x, Y)) exp(ikZ) added to a Blasius base
flow. However, as noted in that work, taking this approach offers ‘no self-similarity,
mainly because the two terms in the sum uYY − k2u scale differently’. To avoid
this issue, it was further assumed that Re−1/2

� k � 1 (implying small spanwise
wavenumber), but three-dimensional effects were retained by allowing kw ∼ O(1)
(the subsequent computational work of Luchini (2000) corresponds to k = O(1)).
As for the Libby & Fox modes, solutions are again reduced to a one-dimensional
eigenvalue problem by seeking separable states, for example u(x, Y) = x−µū(η)
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888 R. E. Hewitt and P. W. Duck

where η is the transverse coordinate defined in (1.2). In this case it is found that
µ ≈ 0.787 − 1 ≈ −0.213, leading to algebraic growth of this (spanwise-periodic)
perturbation. As we shall show, the value of 0.787 . . . turns out to be of relevance
even to the localised three-dimensional streak eigenmodes discussed herein.

In this work we will not assume periodicity in the Z coordinate, instead we seek
solutions that solve (1.6) exactly, by retaining both the Y and Z dependence. In this
sense these states are the natural three-dimensional extension of the Libby & Fox
eigenmodes. Central to considering spatially localised streaks, we will require that the
solution returns to the two-dimensional Blasius state as |Z|→∞.

We first encompass the downstream growth of the transverse and spanwise length
scales via a change of variables

(η, ζ )= (2x)−1/2(Y, Z). (1.7a)

The transverse (η) scale is well known from the Blasius solution (1.1)–(1.3), and for
spanwise and transverse diffusion to remain comparable at all downstream positions
we rescale Z in the same manner. Similarly, for the velocity components

Û =U(x, η, ζ ), (1.7b)
(V̂, Ŵ)= (2x)−1/2(ηU(x, η, ζ )−Φ(x, η, ζ ), ζU(x, η, ζ )−Ψ (x, η, ζ )). (1.7c)

For a two-dimensional flow (that is, Ŵ ≡ 0) this formulation exactly mirrors the usual
derivation of the Blasius similarity solution in terms a streamfunction Φ, resulting in
(1.3).

It is helpful to decompose the solution into a Blasius (two-dimensional) base flow
governed by (1.3), plus a three-dimensional streak/roll contribution (denoted by tilde):

U = F′(η)+ Ũ(x, η, ζ ), Φ = F(η)+ Φ̃(x, η, ζ ), (1.8a,b)

Ψ = ζF′(η)+ Ψ̃ (x, η, ζ ), Θ = ζF′′(η)+ Θ̃(x, η, ζ ). (1.8c,d)

The quantity Θ is related to a vorticity component, and is introduced by a cross-
differentiation to remove the pressure term from (1.6). It is worth emphasising that, as
can be seen from (1.7), ζU −Ψ is a measure of cross-flow and a three dimensional
solution with Ŵ 6= 0 is achieved for Ψ̃ 6= Ũ.

The fully nonlinear, three-dimensional parabolic system that represents the boundary-
region equations (1.6) is now converted to:

∇̂
2Φ̃ = 2Ũη − Θ̃ζ + 2xŨηx, ∇̂

2Ψ̃ = 2Ũζ + Θ̃η + 2xŨζx, (1.9a,b)

∇̂
2Ũ =−FŨη − Φ̃F′′ − Φ̃Ũη − ζF′Ũζ − Ψ̃ Ũζ + 2xF′Ũx + 2xŨŨx, (1.9c)

∇̂
2Θ̃ = 2(ζ (F′ + Ũ)Ũη + ζ ŨF′′ − η(F′ + Ũ)Ũζ )

− (F+ Φ̃)Θ̃η − ζ Φ̃F′′′ − Ψ̃ (F′′ + Θ̃ζ )− ζF′Θ̃ζ − 2(F′ + Ũ)Θ̃ − 2ŨζF′′,

+ 2x((F′′ + Ũη)Ψ̃x − Ũζ̂ Φ̃x + (F′ + Ũ)Θ̃x − (ζF′′ + Θ̃)Ũx). (1.9d)

This system is parabolic in x, subject to the following no-slip and symmetry boundary
conditions:

Ũ = Ψ̃ = Φ̃ = 0, Θ̃ = Ψ̃η, on η= 0, (1.10a,b)

Ũζ = Φ̃ζ = Θ̃ = Ψ̃ = 0, on ζ = 0. (1.10c)
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Localised streak solutions for a Blasius boundary layer 889

Domain size λ1 λ2 λ3 λ4

40× 40 −0.772 −1.221 −1.501 −1.693
60× 60 −0.777 −1.242 −1.500 −1.693
80× 80 −0.780 −1.253 −1.500 −1.694

TABLE 1. The first four eigenvalues (all real) obtained from the bi-global computation
for domain truncations of the (ζ , η) plane at ζ = η= 40, 60, 80.

On approaching the free stream (η�1 with ζ fixed), following Hewitt & Duck (2014),

Φ̃ ∼
A(x)η
ζ 2 + η2

, Ψ̃ ∼
A(x)ζ
ζ 2 + η2

, (1.10d,e)

where A is a constant determined as part of the solution, representing a measure of
the far-field mass flux away/towards the streak into the free stream. For large ζ near
the boundary surface (η=O(1)), there is a spanwise-decaying inner solution that must
match (10d,e) to the no-slip conditions at the surface. The details of this region are
given in Hewitt & Duck (2014), but will be revisited in a related context in § 2.1.
The arguments against algebraic decay towards the free stream made for traditional
boundary-layer problems (see for example the discussions of, Brown & Stewartson
1965; Hewitt, Duck & Stow 2002) do not apply to the boundary-region equations as
the vorticity decay remains exponential.

2. Spatially localised streak eigenmodes
The evolution of small-amplitude localised perturbations is governed by (1.9), under

a linearisation assumption that neglects products of the disturbance (Φ̃, Ψ̃ , Ũ, Θ̃).
Given the form of (1.9) there are clearly downstream (decaying) disturbances
proportional to xλ. We may therefore seek linearised solutions of the form

(Φ̃, Ψ̃ , Ũ, Θ̃)= εxλ(φ(ζ , η), ψ(ζ , η), u(ζ , η), θ(ζ , η))+ · · · , (2.1)

which for ε� 1 reduces (1.9) to a linear bi-global (generalised) eigenvalue problem
for λ. We discretise the eigenproblem using a standard second-order central-difference
discretisation of the ζ–η plane, using a non-uniform grid, with a subsequent matrix
eigenvalue analysis via the SLEPc library of Hernandez, Roman & Vidal (2005).
This is a substantial computation, with a sparse matrix eigenproblem of size
4NηNζ × 4NηNζ , where Nη,ζ represents the number of nodal points in each direction.

If we were to ignore the ζ dependence in (2.1) then we should expect to recover
the (two-dimensional) eigenmodes of Libby & Fox (1963) outlined in (1.2). However,
these do not satisfy our far-field requirement that modes are localised, i.e. they do
not decay with ζ . Nevertheless any eigenmode solutions to the linearised form of
(1.9) may be viewed as new three-dimensional (localised) analogues of these classical
states.

In table 1 we provide numerical values (to three decimal places) for the first
four localised eigenmodes. These values are obtained by fixing the domain size, then
increasing the number of mesh points until the first four eigenvalues remain unchanged
(to three decimal places) to any further refinement. Only after the eigenvalues are
spatially resolved do we then recompute on a larger domain size to assess the
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890 R. E. Hewitt and P. W. Duck

influence of domain truncation. The resulting values for λ are robust to changes in
both the number of nodal points in the computational mesh and the truncation of the
computational domain. There are no other nearby eigenvalues in the region (λr>−1.7)
spanned by these first four modes and the eigenvalues remain isolated/discrete. We
have made no attempt to investigate the behaviour of the faster-decaying modes for
λr <−1.7.

The values of table 1 correspond to (real) eigenfunctions, which are shown in
figure 1 over the (η, ζ ) plane. Each subfigure shows contours of the u component
of the eigenmode (normalised to make the minimum value −1) and overlaid is the
in-plane ‘roll’ velocity field

(ηu− φ, ζu−ψ). (2.2)

Given these results, the perturbation velocity field at any required x location can be
obtained merely by rescaling of the (η, ζ ) coordinates and the in-plane velocities by
(2x)1/2, as specified by (1.7).

It is immediately apparent from figure 1 that some modes decay more rapidly away
from the streak, for example figure 1(b). This is particularly noticeable in the near-
plate region (e.g. η < 2) where in some cases there is a marked cross-flow – that is,
a non-zero Ŵ velocity component in the notation of (1.7). In all cases this cross-flow
decays to zero for sufficiently large values of ζ ; note that figure 1 shows only a small
section of the total computational domain.

2.1. A connection to the Libby & Fox (1963) and Luchini (1996) eigenmodes
We have obtained three-dimensional (bi-global) eigenmodes that describe the
downstream evolution of a single spatially isolated streak in a Blasius boundary layer.
At first sight this may seem to be entirely disconnected from the two-dimensional
eigenmodes of Libby & Fox (1963) and the (long-wavelength) spanwise-periodic
states of Luchini (1996) described in the introduction. However, we are able to relate
a subset of the bi-global modes to both the work of Luchini and Libby & Fox by a
careful consideration of the far-field behaviour. To achieve this, we will examine the
flow far from the streak (ζ � 1) and decompose the solution into an inner η=O(1)
layer matched to an outer η=O(ζ ) region.

2.1.1. The inner η=O(1) region for ζ � 1
In the far field but still near to the boundary, that is ζ � 1 and η=O(1), we look

for a spanwise decaying (β > 0) expansion for the eigenfunctions of (2.1) in the form

(φ, ψ, u, θ)= (φ̄(η)ζ−(β+1), ψ̄(η)ζ−β, ū(η)ζ−(β+1), θ̄ (η)ζ−β)+ · · · . (2.3)

For an expansion in the form of (2.3), the governing equations (1.9) provide a
leading-order ordinary-differential system for ζ � 1 of

φ̄η = (2+ 2λ)ū+ βψ̄, (2.4a)

ūηη = (2λ+ β + 1)ūF′ − Fūη − F′′φ̄, (2.4b)

ψ̄ηη = (2λ+ β − 1)(ψ̄ − ψ̄(∞))F′ − Fψ̄η − F′′φ̄ + 2F′ū, (2.4c)

where the last equation above follows from an integration of the θ equation arising
from (1.9). At the boundary, no-slip and impermeability conditions give ū= φ̄= ψ̄ = 0
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Localised streak solutions for a Blasius boundary layer 891
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FIGURE 1. (Colour online) The first four localised eigenmodes for a Blasius flow (all
real), normalised such that the largest perturbation to u is −1. Contours show the
streamwise (streak) velocity component u(η, ζ ), whilst the vector field shows the (in-plane)
roll velocity components. These modes correspond to (a) λ1, (b) λ2, (c) λ3 and (d) λ4, as
given in table 1. A scale for length of the in-plane velocity vectors is noted at the top of
each panel via a vector of magnitude 2 (a–c) and 5 (d).

whilst ū→ 0 and ψ̄→ ψ̄(∞) as η→∞. The quantity ψ̄(∞) is in general unknown
and must ultimately be determined by an outer solution for η, ζ � 1, which we will
discuss below.
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892 R. E. Hewitt and P. W. Duck

In physical terms, as can be seen from the similarity form of (1.7c) and the
decomposition (2.3), the cross-flow velocity associated with this perturbation is
proportional to ū− ψ̄ . Because ū→ 0 for η� 1, we see that ψ̄(∞) is essentially a
measure of cross-flow at the base of the outer region.

Somewhat surprisingly, we can still relate (2.4) to the (non-localised) eigenmodes
discussed by Libby & Fox (1963) and Luchini (1996). To do this we introduce h= ū−
ψ̄ , which is related to the amount of cross-flow, and eliminate ū. This reformulation
leads to

φ̄ηηη + Fφ̄ηη + F′′φ̄ + (2λ+ β + 1)(F′′φ̄ − F′φ̄η)= β(2F′h+ (2λ+ β − 1)h(∞)),
(2.5a)

hηη = (2λ+ β − 1)(F′h− h(∞))− Fhη, (2.5b)

where h(∞)=−ψ̄(∞). For h(∞) 6= 0 there is always a forced solution available to
(2.5), which is an issue we will revisit below.

In both the homogeneous (h(∞) = 0) and inhomogeneous (h(∞) 6= 0) cases, the
corresponding solutions for φ̄ (and hence ū, θ̄ ) are obtained from (2.5a), which is
forced by h. In particular we note that

φ̄ ∼−βh(∞)η+ d, (2.6)

for a constant d when η is large.
In the absence of any leading-order cross-flow at the base of the outer layer

(h(∞) = 0) a possible solution is obviously h ≡ 0, in which case (2.5a) reduces to
the problem first considered by Libby & Fox (1963). With some minor rescaling, we
obtain precisely the Libby & Fox eigenproblem, or equivalently equation (4) from the
discussion of Luchini (1996). These eigenmodes therefore exist with the following
discrete values

λ+
β + 1

2
≈−1,−1.887,−2.814, . . . . (2.7)

Furthermore, if h(η) 6≡ 0, but with h(∞) = 0, again, some minor rescaling of
η reduces the decoupled problem for h to (Luchini 1996, equation (9)), with the
eigenvalue s in that work replaced by λ+ (β − 1)/2. In this scenario therefore, there
exist discrete eigenmode solutions to (2.5) with

λ+
β − 1

2
≈−0.787,−1.694,−2.627, . . . . (2.8)

Note that the numerical values on the right-hand sides of (2.7) and (2.8) are provided
in (Luchini 1996, tables 1 and 2).

The inner η=O(1) behaviour therefore has three possibilities, (i) h(∞) 6= 0 leading
to a forced solution driven by cross-flow at the base of an outer region, (ii) h(∞)= 0
with a Libby & Fox eigenmode that is free of cross-flow at leading order or (iii)
h(∞) = 0 with a Luchini eigenmode that has a jet-like cross-flow that decays on
approaching the outer region.

2.1.2. The outer η=O(ζ ) region for ζ � 1
At this stage of the discussion, the spanwise decay of the localised mode is

determined by β, which is a free parameter, and any pair of (λ, β) satisfying (2.7) or
(2.8) is valid. However, we have yet to impose matching conditions as η→∞, for
which we need to determine the outer flow.
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Localised streak solutions for a Blasius boundary layer 893

In the outer region ζ , η� 1, u and θ are negligible whilst φ and ψ are harmonic.
In polar coordinates r= (ζ 2

+ η2)1/2� 1 and α = arctan(η/ζ ), this leads to

φ = a1r−1 sin(α)+ a2r−2 cos(2α)+ a3r−3 sin(3α)+ . . . , (2.9a)
ψ = a1r−1 cos(α)− a2r−2 sin(2α)+ a3r−3 cos(3α)+ . . . , (2.9b)

which ensures symmetry of φ (and antisymmetry of ψ) about ζ = 0 (that is, α =
π/2). In effect, this is a generalisation of the far-field boundary conditions discussed
by Hewitt & Duck (2014). On approaching the η= 0 boundary (α→ 0) from the outer
region, we obtain

φ =
a1η+ a2

ζ 2
+
−a1η

3
− 3a2η

2
+ 3a3η+ a4

ζ 4
+ · · · , (2.10a)

ψ =
a1

ζ
+
−a1η

2
− 2a2η+ a3

ζ 3
+ · · · . (2.10b)

For consistency between the η = O(1) inner region and the η = O(ζ ) outer solution
we must clearly match solutions of (2.5) for large η with (2.10). The values ai
are determined globally as part of the bi-global eigenvalue problem (to within a
normalisation).

2.2. Classification of the first four computed eigenmodes
Having identified the types of behaviour that can occur, we may now classify the first
four eigenvalues (λ1, . . . ,λ4) presented in table 1, according to their large-ζ behaviour
as described in § 2.1. In particular, we find that the first and fourth modes, λ= λ1,4
have far-field behaviour comparable to the Luchini (1996) modes, with h(∞)= 0 in
the notation of § 2.1. The other two modes of table 1 are associated with the case
h(∞) 6= 0 and remain distinct.

2.2.1. Modes linked to those of Libby & Fox (1963) and Luchini (1996): h(∞)= 0
If a1 = 0 but a2 6= 0 then (2.10) shows that ψ = o(1/ζ ) as η → 0 for large ζ .

However φ = O(1/ζ 2), which therefore requires that β = 1 in (2.3). This lack of a
(leading-order, near-boundary) cross-flow in the outer solution as α→ 0 means that
h(∞) = 0. In this case, equation (2.5) is reduced to a one-dimensional eigenvalue
problem for λ. One option is that, near the plate the eigensolution connected to the
Luchini eigenmodes develop, as determined by (2.8), leading to (as β = 1)

λ≈−0.787,−1.694, . . . . (2.11)

A second possibility is that the response takes the form of a Libby & Fox
eigenmode determined by (2.7), such that (on taking β = 1):

λ≈−2,−2.887, . . . . (2.12)

Clearly the Libby & Fox modes are faster decaying (in x), and therefore do not
dominate the far-downstream response of the flow. The least-damped modes are
connected to those of Luchini, and as such are obtained in the (ζ � 1) far field
of the bi-global eigenmodes shown in figure 1(a,d) where λ = λ1 ≈ −0.787 and
λ= λ4 ≈−1.694 respectively.

To validate this asymptotic description we compare the predicted large-ζ behaviour
for the first eigenmode (λ = λ1) shown in figure 1(a) with the predicted inner/outer
descriptions of (2.5) and (2.9) respectively. Figure 2(a) shows this comparison for a
cross-section of ψ taken at ζ = 20, normalised such that the peak value is unity.
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FIGURE 2. (Colour online) A comparison of the computed bi-global eigenmode data
(points) with the far-field ζ � 1 asymptotic predictions (solid lines). The asymptotic
prediction shows the inner solution given by (2.5) for η = O(1), and the outer solution
given by (2.9) for η=O(ζ ). (a) A (normalised) cross-section of the first eigenmode shown
in figure 1(a) at ζ = 20. (b) A (normalised) cross-section of the third eigenmode shown
in figure 1(c) at ζ = 20.

2.2.2. Modes not linked to those of Libby & Fox (1963) and Luchini (1996): h(∞) 6= 0
For the third mode i.e. λ= λ3 we find that a1 6= 0 in the outer-flow solution. In this

case (2.10) shows that we should expect a non-zero cross-flow on the boundary with
ψ =O(1/ζ ). We must therefore take β = 1 (again) in (2.3), but with h(∞)=−a1 to
ensure a leading-order matching between the wall layer and the outer solution. These
forced solutions of (2.5) can be found for any value of λ, and on leaving the wall
layer we also require that d= a2 for consistency between (2.6) and (2.10a).

A similar result follows for the second mode with λ = λ2. Numerical evidence in
this case is that a1= a2= 0 and a3 6= 0. The analysis follows in the same way, leading
to a forced inner solution near to the boundary but this time the more rapid radial
decay of the outer solution requires that β = 3 in (2.3); this rapid decay is evident in
figure 1(b).

Unlike eigenmodes corresponding to λ1 and λ4, these states appear to be inherently
global and λ is not determined solely from the far-field structure provided by (2.5).
Nevertheless, we can still show that the computed bi-global eigenmodes are consistent
with this asymptotic (ζ � 1) description. Figure 2(b) compares a (normalised) cross-
section of ψ for the eigenmode shown in figure 1(c) with the inner solution that
comes from solving (2.5), and the outer solution of (2.9). The forcing of the inner
solution by a non-zero outer value of ψ as η/ζ → 0 is clearly shown in figure 2(b),
in contrast to figure 2(a).

3. Nonlinear steady streak/roll states
To compute nonlinear states we undertake a parabolic marching of the full system

(1.9) subject to a finite-amplitude disturbance. We choose to force the disturbance via
a localised injection through the plate surface:

V̂(x, Y = 0, Z)= κV̂in(x, Z). (3.1)
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Localised streak solutions for a Blasius boundary layer 895

This ad hoc perturbation will force a streak response with an amplitude parameterised
by κ , and results in the following modified boundary conditions for (1.9)

Φ =−
√

2xκV̂in, Θ =Ψη +
√

2xκ
∂V̂in

∂ζ
, on η= 0. (3.2a,b)

This model is introduced as conceptually comparable to the experimental
configuration of Asai et al. (2002), where a spatially localised streak is generated by a
5.5 mm (or 7.5 mm) (width) by 2.4 mm (height) mesh screen placed perpendicularly
to the plate 500 mm from the leading edge. The (undisturbed) displacement thickness
at this point is δ∗0 ≈ 2.4 mm. If the downstream response of a perturbation to the
Blasius flow is captured by (1.9) then we should also expect to be able to reproduce
the general features of these experiments.

We choose a simple, localised disturbance for (3.1) of the form

V̂in = (2x)−1/2e−γ (x−x0)
2
G(ζ ), (3.3a)

where ζ = Z/(2x)1/2 is a spanwise coordinate measured relative to the local
(transverse) length scale of the Blasius solution. This disturbance is localised around
x = x0, with decreasing streamwise extent as γ increases. The (2x)1/2 factor ensures
that the spanwise extent of the disturbance and the amplitude are measured relative
to the local Blasius base-flow properties. For the spanwise shape of the disturbance
we choose

G(ζ )= e−cζ 2
(1− 2cζ 2), (3.3b)

where c sets the spanwise length scale. To mimic the Asai et al. (2002) experimental
configuration the polynomial term is included in (3.3b) to ensure that there is no net
mass flux into the boundary layer, that is

∫
∞

0 G(ζ ) dζ = 0.
Parabolic marching of (1.9) begins at x= 0 from trivial initial conditions on account

of (3.3) being negligible at the leading edge for the considered values of x0. A second-
order (Crank–Nicolson) scheme is used to march the system with Newton iteration to
handle the nonlinearity. At each x-station and each Newton iteration we are left to
solve a 4NM × 4NM sparse system, where N, M are the number of nodes in ζ , η
associated with a (second-order) central-difference discretisation. Each sparse solve is
performed using a direct parallel solver (Amestoy, Duff & L’Excellent 2000) and care
is taken with respect to choices of N, M and the domain truncation of ζ , η. To reduce
the number of degrees of freedom, the mesh of nodes is non-uniformly spaced in both
directions, to allow a higher resolution in the neighbourhood of ζ = η= 0.

To represent the downstream developing solution we examine the centreline
(dimensionless) shear at the wall:

τ(x)= uy|y=0,z=0 = Re1/2ÛY |Y=0,Z=0 = Re1/2(2x)−1/2Uη|η=0,ζ=0. (3.4)

We also present the global measure suggested by Andersson et al. (2001)

A(x)= 1
2

[
max

Y,Z
(Û − ÛB)−min

Y,Z
(Û − ÛB)

]
, (3.5)

where ÛB is the Blasius solution (F′ in our earlier notation), so that Û − ÛB = Ũ in
the notation of (1.8).
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FIGURE 3. (Colour online) Solutions to (1.9) obtained by parabolic marching in the
downstream coordinate x. A localised injection given by (3.3) is imposed with x0 = 3/2,
γ = 10, c = 1/10, with κ increasing in the direction of the arrows shown. (a) The
centreline shear rescaled such that the undisturbed Blasius base flow has a value of
0.4696 . . . and κ = 1, 2, 4, 8. (b) A global measure of the streak amplitude defined by
(3.5) for κ = 2, 4, 8. The line segment shows the predicted decay (xλ1 ) obtained from the
linear (κ� 1) eigenvalue analysis of § 2.

In figure 3(a) we show the evolution of the rescaled shear τ(2x)1/2Re−1/2 as a
function of downstream distance x, for an injection (3.3) with γ = 10, c = 1/10,
x0= 3/2 and increasing κ = 1, 2, 4, 8. It is worth noting that even for large-amplitude
injection (κ = 8) there is no evidence of any flow reversal and breakdown of the
parabolic marching, instead the perturbation leaves a region of essentially zero shear
until eventually starting to relax back towards the Blasius value of 0.4696 . . . . In the
experimental work of Asai et al. (2002) it is also noted that there is no evidence of
reverse flow behind the screen that provides the nonlinear disturbance mechanism.

Figure 3(b) shows the evolution of A for the same disturbance with κ = 2, 4, 8, but
over a substantially longer downstream length scale. The perturbation is long lived,
with an ultimate decay that is algebraic; the figure also shows the predicted least-
damped decay rate of x−0.787 that arises from the (linearised) bi-global eigenmode
prediction of Ũ ∼ xλ1 (as per table 1).

The impact of the disturbance location and spanwise extent, as parameterised by
x0 and c in (3.3), is shown in figure 4. Increasing x0 decreases the amplitude of
the resulting disturbance, being effectively over a length scale (1/γ ) that is reduced
compared to the local boundary-layer length scale (which is growing as

√
x0). For

larger values of c the recovery towards a Blasius solution occurs over a shorter
downstream distance. This is to be expected, as larger c leads to a disturbance over
a smaller spanwise length scale which in the nonlinear regime reduces more rapidly
owing to spanwise diffusion. For more modest variations in the spanwise extent of the
forcing, the streamwise centreline velocity of the streak is relatively insensitive. This
is consistent with the experiments of Asai et al. (2002), which show only small-scale
differences (at z = 0) when comparing the streaks generated by screens of width
7.5 mm and 5.5 mm.
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FIGURE 4. A measure of the maximum disturbance to the streamwise velocity as
measured by A, defined by (3.5). The flow is perturbed nonlinearly via (3.1) with κ = 8,
γ = 10. Four different cases are shown corresponding to (i) x0= 3/2, c= 1/10, (ii) x0= 5,
c= 1/10, (iii) x0 = 10, c= 1/10 and (iv) x0 = 10, c= 0.5.
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FIGURE 5. (Colour online) A solution of (1.9) subject to a perturbation of the form
(3.1) (solid lines), compared to the (dimensional) experimental data (points) of Asai et al.
(2002). The parameters in (3.3) are κ = 12, x0 = 10, γ = 10 and c= 1/10; this choice of
x0 corresponds to choosing L∗ = 5 cm in the non-dimensionalisation.

A more quantitative comparison can be made with the available experimental
data. To do this we take the data of Asai et al. (2002) for a 7.5 mm mesh screen,
comparing the reported velocity profiles at the centre of the streak (z = 0) with
numerical results. Clearly we cannot precisely model the nonlinear disturbance
associated with this choice of mesh screen, and we have not taken any systematic
approach to maximise the level of agreement. Nevertheless, a comparison is shown in
figure 5 for x0 = 10, κ = 12 with our default values of γ = 10 and c= 1/10. (Given
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FIGURE 6. (Colour online) Normalised experimental data (points) of Asai et al. (2002)
mapped to the non-dimensional coordinate η. Data points show the (normalised) deviation
from a Blasius profile along the streak centreline (z = 0, or equivalently ζ = 0).
Squares/circles correspond to data acquired at x∗= 550 mm and 700 mm respectively. The
solid line is obtained from the least-damped (λ1) eigenmode shown in figure 1(a).

the self-similar nature of the Blasius base-flow one could of course equally choose
x0 = 1, γ = 100, for example.)

Given that the mesh screen disturbs the flow at x∗ = 500 mm in the experimental
configuration, this corresponds to a choice of L∗= 50 mm in our non-dimensionalisation
with Re≈ 13 540. The comparison of figure 5 is shown in terms of the dimensional
coordinate normal to the plate, y∗. The profile far from the disturbance source
(z∗= 30 mm) is clearly in agreement with an undisturbed Blasius profile. In the wake
of the screen, two profiles are presented corresponding to x∗ = 550 mm (x = 11)
and x∗ = 700 mm (x= 14). This comparison provides some encouragement that (1.9)
can effectively model the downstream response, however we make no claims beyond
consistency of the results given that the computation is not precisely replicating the
experimental disturbance of the mesh screen.

To remove the ambiguity of the disturbance generation mechanism, we also compare
these same experimental results with the bi-global eigenmodes discussed in § 2. To
do this we subtract the (experimentally obtained) velocity profiles in figure 5 from
the appropriate Blasius solution at the two locations x∗ = 550, 700 mm, to give
a nonlinear perturbation to the streamwise velocity along z = 0. After normalising
the perturbation to have a unit maximum velocity, and converting the dimensional
transverse coordinate y∗ to the dimensionless value η, we compare these data with
the corresponding centreline perturbation of the least-damped eigenmode shown in
figure 1(a). Despite the obvious nonlinear nature of the perturbation at x∗ = 700 mm
(as shown in figure 5), the normalised response compares favourably with the shape
of the first linear mode. In this regard it is worth noting that the second mode very
closely reproduces the shape of the first mode along the centreline, whilst the third
mode is of the same shape but displaced to slightly larger values of η.

4. Discussion
We have shown that for a Blasius base flow, the classical linearised (two-

dimensional) modes of Libby & Fox (1963) can be generalised to give three-
dimensional modes corresponding to self-similar perturbations that remain localised in
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the spanwise coordinate. These new linearised modes lead to a bi-global eigenvalue
computation for the eigenmode velocity field, with the downstream algebraic decay
rate being the eigenvalue. We show that the slowest-decaying localised streak
perturbation behaves like xλ, where λ= λ1 ≈−0.787.

We have shown that a subset of our computed values for the eigenvalue λ can
be related to those of Luchini (1996), who effectively sought spanwise-periodic
disturbances to the velocity components of the form

εxλ
(

u(η),
v(η)

(2x)1/2
,

w(η)
2x

)
eikZ with η= Y/(2x)1/2. (4.1)

However, progress for this approach was achieved by assuming a small spanwise
wavenumber k� 1, whilst kw=O(1). This small-wavenumber scaling for w is crucial
in order to retain three-dimensional effects and is equivalent to replacing periodicity
in Z with a cross-flow that is proportional to Z. The governing equations of Luchini
(1996) are therefore also obtained for a disturbance of the form

εxλ
(

u(η),
v(η)

(2x)1/2
, ζ

w(η)
(2x)1/2

)
, (4.2)

where ζ = Z/(2x)1/2 is a rescaled spanwise coordinate.
If we compare (4.2) to the algebraic decay of the localised eigenmode at large

spanwise distances (ζ � 1), as described by (2.3), we recover the same flow field
for β =−1. That the two problems are connected therefore reduces to the observation
that the eigenvalue problem (2.5) can be applied to any algebraically varying spanwise
perturbation simply by including the parameter β in the streamwise decay rate via
(2.7) and (2.8).

We have shown consistency between nonlinear streak states driven by boundary
injection and the linearised eigenvalue analysis, by parabolic marching the governing
system (1.9). Furthermore we can demonstrate favourable comparisons with limited
available experimental data for localised streaks. We could no doubt improve these
comparisons further, by fine tuning the parameters associated with the boundary
injection, but since we cannot model the mesh screen disturbance employed in
the experiments we choose not take this approach. We note that these experiments
have also been similarly reproduced by unsteady three-dimensional Navier–Stokes
calculations in the work of Brandt (2007). However, the nonlinear boundary-region
calculations can be carried out at a fraction of the cost of direct numerical simulations
of the Navier–Stokes equations.

The formulation of the boundary-region equations is a fully rational process (i.e.
their derivation can be fully justified on asymptotic consistency grounds). Indeed, they
capture a good deal of the physics of the full Navier–Stokes system (lacking primarily
only the streamwise pressure gradient and the streamwise viscous diffusive terms). It
seems likely that this makes them robust and they certainly display a lack of singular
behaviour otherwise often encountered in boundary-layer studies.

An interesting feature seen in our calculations (notably figure 3a) is that even large
disturbances do not seem to trigger flow reversal, an observation that appears to be
consistent with the experimental results of Asai et al. (2002) as depicted in figure 5.
Indeed, the authors have performed a number of other calculations using the boundary-
region equations for other flow configurations (including results presented in Hewitt
et al. (2017)), and this lack of flow reversal, even for significant flow disturbances,
seems to be a common feature.
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As we note in the introduction, streaks are well known to incite secondary
instabilities and the framework of this current work is clearly open to a rational
non-parallel approach to such viscous three-dimensional travelling disturbances.
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