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a b s t r a c t

The spatial stability properties of an isolated low-speed streak embedded in a Blasius boundary
layer are determined; the streak is generated by steady localised injection, whilst the disturbance
is generated by a linear harmonic localised injection. Isolated streaks driven by short-scale spanwise
forcing have comparable growth rates of both sinuous and varicose instabilities. These features have
been discussed previously via DNS methods, but the novel aspect here is a treatment via a rationally-
parabolised version of the Navier–Stokes equations in the high Reynolds number limit. The parabolic
formulation allows for a more efficient and Reynolds number independent computation of fully
three-dimensional non-parallel streaks their stability. We compute the non-parallel development of
a perturbation by downstream marching from a time-harmonic disturbance generator (in tandem
with the streamwise streak development), before comparing these results with bi-global eigenvalue
calculations. The stability properties are well captured by a weakly non-parallel eigenvalue formulation
of the boundary-region equations, provided that one is not in the vicinity of the disturbance generator.
Further downstream, or at higher excitation frequencies we directly recover the long-wave limit of a
two-dimensional Rayleigh stability problem. Even further downstream (or at even higher excitation
frequencies, which is mathematically equivalent) we must return to a (two-dimensional) Rayleigh
formulation as the streamwise wavelength of the disturbance becomes comparable to the boundary-
layer thickness. For streaks that are comparable with those obtained experimentally our spatial growth
rates and eigenmode shapes compare favourably with the experimentally-determined values. For the
range of streaks considered, we demonstrate the sinuous mode retains the higher growth rate in
the viscous stability problem. The experimentally-observed change over to a dominant varicose mode
nearer the disturbance site is shown to be true only for frequencies that provoke an inviscid response.

© 2019 ElsevierMasson SAS. All rights reserved.

1. Introduction and formulation

Localised surface roughness is known to have a substantial
impact on the route of laminar–turbulent transition in boundary-
layer flows, and there are a number of experimental/numerical
studies that examine the stability of flow over a three-dimensional
roughness element. These surface-mounted roughness elements
are typically cylindrical [1,2], hemispherical [3,4], conical [5],
rectangular cuboid [6], mesh screens [7] or (smooth) bumps [8],
and placed on otherwise flat plate in a uniform free stream.
As a consequence of the presence of the roughness element,
in the ‘wake’ there develops streamwise-aligned vortices with
associated streamwise streaks. Whilst streaks tend to be more
prominent for sharp-sided roughness elements, the generic fea-
tures of the streaks are consistent across a range of disturbance

∗ Corresponding author.
E-mail address: richard.hewitt@manchester.ac.uk (R.E. Hewitt).

generators, not limited to just surface roughness, but also in-
cluding (for example) surface injection over the same length
scales. This is to be expected at least in the far downstream
limit, because the recent work of [9] has demonstrated that a
downstream-decaying streak in a Blasius boundary layer can be
described (in this linearised regime) in terms of algebraic, steady,
localised, self-similar, bi-global eigenmodes.

For carefully chosen distributions of three-dimensional sur-
face roughness it is possible to stabilise the two-dimensional
Tollmien–Schlichting mechanism [10,11] and for similar scale
surface injection (in the presence of a free stream pressure gradi-
ent) it is possible to prevent separation [12]. However in all cases,
as the height of the surface roughness (or strength of the surface
injection) is increased, the streak that is induced downstream of
the disturbance region ultimately becomes unstable, leading to
transition.

The problem of determining the stability of streaks has been
tackled via a range of approaches, for example, experimentally [7],
numerically via global stability analyses and DNS [1,13], as well
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as local parallel theories [14], global optimal perturbations [15]
and in compressible flow through bi-global eigenvalue compu-
tations and three-dimensional PSE analyses [6]. In some cases
the analysis points to sinuous modes dominating the response,
whilst in others varicose modes are suggested to be the most
relevant. Furthermore, even in sub-critical cases where varicose
and sinuous modes are both stable, optimal perturbations can
still achieve large growth [2]. In [1] both sinuous and varicose
modes have been located as global eigenmodes for flow past
(circular) cylindrical roughness elements, with the aspect ratio of
the cylinder playing a major role in the selection of the dominant
mode.

An approach that has not been considered in as much detail
(and which we pursue herein) is one based on the assumption
of an asymptotically large Reynolds number. This methodology
has a substantial simplifying advantage of formally reducing the
governing equations of both the base flow and perturbation to
being parabolic systems. To pursue this approach we consider
incompressible flow over a semi-infinite flat plate, which in the
absence of any additional forcing merely results in the classical
two-dimensional Blasius solution. However, our focus here lies
in the spatially developing instability of a single streak structure
embedded in this Blasius flow, as induced by a spatially lo-
calised boundary injection. This localised injection could equally
be an isolated roughness element, but one that is elongated
in the streamwise direction to match the required boundary-
layer scales. The resulting elongated streaks are O(Re−1/2) ×

O(Re−1/2) in the (dimensionless) cross-sectional plane in the high
Reynolds number (Re ≫ 1) limit. As such, any high Reynolds
number reduction must retain both transverse and spanwise dif-
fusion, therefore only diffusion and pressure gradients in the
downstream direction are neglected in this approach.

Investigations that focus on the (Re ≫ 1) stability of a single
streak structure are less common than those that assume pe-
riodicity in the spanwise direction. These isolated longitudinal
streaks are more challenging in that the flow components in
the cross-sectional plane decay towards the free stream only
algebraically as shown in [16] (although the corresponding vor-
ticity and streamwise components still decay exponentially). This
algebraic behaviour is not found in two-dimensional or clas-
sical three-dimensional boundary layers (see for example [17,
18]) and computational formulations that do not capture the far
field correctly can be strongly affected by domain truncation.
Having obtained a spatially-developing steady streak base flow,
any linear stability problem can be approached via the same
formulation, although any local eigenvalue analysis is then best
formulated as a bi-global problem.

As noted in the context of roughness elements above, isolated
low-speed streaks are interesting in that, for sufficiently small
spanwise scales, the sinuous and varicose instabilities have been
shown to have comparable growth rates. This has been demon-
strated both experimentally by Asai et al. [7] and in the corre-
sponding DNS results of Brandt [13]. Motivated by the experi-
mental work reported in [7], the subsequent work of Brandt [13]
used a fully three-dimensional, unsteady, spectral formulation of
the Navier–Stokes system. The experimental arrangement of [7]
employed a mesh screen attached to a flat plate in a uniform flow,
to generate a steady streak. This mesh disturbance was modelled
in [13] as a volumetric forcing of the streamwise momentum
equation with parameters chosen to (approximately) reproduce
the steady streak data. To assess the stability of this streak the
linearised Navier–Stokes equations were time marched from an
impulse response. The later stage nonlinear breakdown of un-
stable sinuous/varicose perturbations induced by time-harmonic
boundary forcing was also considered in [13].

The results of Brandt effectively reproduce the experimental
behaviour found by Asai et al. [7] but at substantial computational

cost. Our goal here is to show that the same features can be
produced by a self-consistent high Reynolds number asymptotic
theory based around the ‘boundary-region equations’. We focus
particularly on [7,13] because a mesh screen ‘roughness’ has been
shown not to lead to reverse flow in the immediate wake, and
so seems the most likely candidate for an application of the
high-Reynolds number theory.

This general type of ‘boundary-region’ formulation has been
previously employed in (for example) discussions of isolated
streaks [16,19,20], spanwise-periodic streaks/vortices [21,22],
their transient growth [23–25] and their self-sustained interac-
tion with travelling waves [26].

In terms of a dimensional coordinate system (x∗, y∗, z∗) aligned
with the leading edge (x∗

= 0), we non-dimensionalise with an
arbitrary lengthscale L∗ in the usual way via

x∗
= L∗x , (y∗, z∗) = L∗Re−

1
2 (2x)

1
2 (η, ζ ) , (1)

where Re = U∗
∞
L∗/ν∗

≫ 1 is a Reynolds number based on a
(uniform) freestream speed U∗

∞
and kinematic viscosity ν∗. In

(1) the factor of (2x)1/2 is a convenient method of capturing
the downstream thickening/broadening of the viscous layer but
the solutions we consider have no self-similarity constraint. To
allow a later formulation of the linear stability problem for time-
harmonic perturbations, we retain the unsteady terms with a
corresponding choice for the natural timescale of t∗ = tL∗/U∗

∞

(this in itself precludes a self similar response).
The dimensional velocity field (u∗, v∗, w∗) is expanded in the

usual manner

u∗
= U∗

∞
U+· · · , (v∗, w∗) = U∗

∞
Re−

1
2 (2x)−

1
2 (V ,W )+· · · , (2a)

where, in general, U, V ,W are functions of x, ζ , η, t . The corre-
sponding pressure field is

p∗
= ρ∗U∗

∞

(
Re−1/2p(x, t) + Re−1P(x, ζ , η, t)

)
+ · · · , (2b)

in the absence of any freestream pressure gradient, with ρ∗ the
constant density. Here p is a displacement induced correction
to the pressure field that does not affect the leading-order sys-
tem, whilst P must be retained in the leading-order momentum
equations in the high Reynolds number limit.

The leading-order system for large Re provides a primitive
variable formulation of the ‘boundary-region equations’, how-
ever in what follows we pursue an alternative formulation that
arises from a cross differentiation of the momentum equations to
usefully eliminate the pressure correction P , following previous
authors, including [9]. On a further substitution of

(V ,W ) = (ηU −Φ, ζU − Ψ ) , (3)

we recover the dimensionless unsteady boundary-region equa-
tions in the form given in [16], but now including the x, t deriva-
tives:

2xUx + 2U = Φη + Ψζ , (4a)

Θ = Ψη −Φζ , (4b)

∇
2U = 2xUUx −ΦUη − ΨUζ + 2xUt , (4c)

∇
2Θ = 2x

(
UηΨx − UζΦx + UΘx −ΘUx

)
+2

(
ζUUη − ηUUζ

)
−ΦΘη − ΨΘζ − 2UΘ + 2xΘt , (4d)

where

∇
2

≡
∂2

∂η2
+

∂2

∂ζ 2
. (4e)

As a streak generation mechanism, we allow for O(Re−1/2)
injection through the η = 0 boundary, leading to the boundary
conditions

U = Ψ = 0 , Φ = Φinj(x, ζ , t) , on η = 0 , (5a)



R.E. Hewitt and P.W. Duck / European Journal of Mechanics / B Fluids 76 (2019) 413–421 415

U → 1, Ψ → 0 , as η → ∞ , (5b)

where Φinj defines an injection distribution on the plate surface.
This localised injection is used to drive a steady streak base state
for a subsequent linear stability analysis.

The far-field behaviour of (4) is analysed in detail in the work
of Hewitt et al. [16]. Of particular note here is that

(Φ,Ψ ) ∼
A(x, t)
ζ 2 + η2

(η, ζ ) , for ζ 2 + η2 ≫ 1 (6)

away from the boundary, leading to algebraic decay into the free
stream of the cross-sectional (V ,W ) velocities, although the vor-
ticity component defined by Θ in (4b) still decays exponentially.
For the solutions presented herein, we enforce this algebraic
behaviour explicitly to improve accuracy of solutions computed
on a truncated domain, which turns out to be vitally important
for numerical accuracy.

From the definition (2), this boundary injection Φinj corre-
sponds to a weak dimensional injection velocity evaluated at the
wall of

v∗(y∗
= 0) = −U∗

∞
Re−

1
2 (2x)−

1
2 Φinj(x, ζ , t) . (7)

Our focus is on injections (Φinj < 0) that are localised in space
with |Φinj| → 0 exponentially away from the injection region.

2. Non-parallel injection-driven steady streaks

Before we address the stability properties, we first consider a
class of steady non-parallel developing base states; for this we
extend the recent approach of Hewitt et al. [9]. The downstream
evolution of the steady flow can be determined by decomposing
the solution into a two-dimensional Blasius base flow plus a
(short-spanwise scale) finite-amplitude correction:

U = UB(η) + Ũ(x, η, ζ ) , (8a)

Φ = ΦB(η) + Φ̃(x, η, ζ ) , (8b)

Ψ = ζΨB(η) + Ψ̃ (x, η, ζ ) , (8c)

Θ = ζΘB(η) + Θ̃(x, η, ζ ) . (8d)

In this approach, zero injection (Φinj ≡ 0) leads to the (two di-
mensional) Blasius state (denoted by the subscript-B terms) being
the only non-zero contribution. For Φinj ̸= 0 this decomposition
yields a nonlinear system of equations that must be marched
numerically (parabolically) downstream in x from the leading
edge for the flow quantities (Ũ, Φ̃, Ψ̃ , Θ̃).

We choose to induce a steady streak by a localised injection
of the form

Φinj(x, ζ ) = −κF (x; x0)G(ζ ) , (9a)

where

F (x; x0) = e−γ (x−x0)2 and G(ζ ) = e−Cζ2 (1 − 2Cζ 2) ; (9b)

in what follows we fix γ = 10 as variations of γ are equivalent
to a rescaling of x, x0. This is largely a Gaussian injection profile
in both the downstream and spanwise coordinate, with a minor
modification of the (1 − 2Cζ 2) factor, which ensures a zero net
mass flux into the boundary layer. The magnitude of the injection
is determined by κ , the downstream location of the injection
is centred at x = x0, whilst the (spanwise) lengthscale of the
injection region decreases for increasing values of the constant
C . This choice of injection is consistent with the recent paper of
Hewitt et al. [9], but our focus is now instead on the stability
properties of the resulting steady structures.

The baseflow evolution is determined by discretisation of (4)
in the (ζ , η) plane, using a second-order central finite-difference

scheme. The discretisation is over a uniform mesh in a trans-
formed (computational) coordinate system, leading to a non-
uniform mesh in the (ζ , η) plane. The downstream evolution is
determined by Newton iteration applied at each downstream x
location, using a routine Crank–Nicolson method for the down-
stream derivatives. This results in a mesh of Nζ × Nη nodal
points and a (4NζNη × 4NζNη) sparse matrix inversion for each
Newton iteration, which is handled via a multifrontal solver
(MUMPS) [27]. Results were confirmed using a range of domain
truncations and spatial steps, with typical values for moderate
injection values being Nζ = Nη = 401 for (ζ , η) ∈ [0, 20]×[0, 20],
whilst a typical downstream spatial step was δx = 0.005.

In Fig. 1 we show contours of downstream velocity U in the
cross sectional (ζ , η) plane for κ = 12, x0 = 10. The contours
are shown both near the injection location x = 11 (left column)
and further downstream at x = 14 (right column). Variations
in the width of the injection region (via C = 0.1, 0.05, 0.025)
are shown from top to bottom in the figure. The steady injection
(9) was shown by Hewitt & Duck [9] to be a good quantitative
approximation of the steady streak experiments of [7] over a
broad range of downstream positions. We therefore apply (9)
as a convenient computational proxy to such experimentally-
observed localised streaks. Data for an experimentally obtained
base flow from [7] are also shown in Fig. 1(a) and we will return
to discuss our results in this experimental context in Section 4.

3. Linear stability of a localised-streak

Our ultimate goal is to determine the stability of such steady
streak states to linearised unsteady (time harmonic) perturba-
tions, which result in downstream propagating, spatially develop-
ing waves. We tackle this problem via a combination of parabolic
marching of the linearised disturbance equations, together with
a local eigenvalue analysis in the context of the boundary-region
formulation (4).

For base flows such as those shown in Fig. 1, driven by in-
jection profiles described above in (9), we consider the linear
stability to perturbations of a set forcing frequency ω (a real
constant) via a decomposition into

U = [UB(η) + Ũ(x, η, ζ )] + ϵe−iωtu(x, η, ζ ) + c.c. , (10a)

Φ = [ΦB(η) + Φ̃(x, η, ζ )] + ϵe−iωtφ(x, η, ζ ) + c.c. , (10b)

Ψ = [ζΨB(η) + Ψ̃ (x, η, ζ )] + ϵe−iωtψ(x, η, ζ ) + c.c. , (10c)

Θ = [ζΘB(η) + Θ̃(x, η, ζ )] + ϵe−iωtθ (x, η, ζ ) + c.c. . (10d)

For each component the square-bracketed terms determine the
localised, nonlinear, non-parallel streak of (8), whilst the O(ϵ)
terms are the time-harmonic spatially developing linear distur-
bance field. The base flows are such that Ũ is symmetric about the
centreline ζ = 0, but the disturbance field can either be varicose
(with u symmetric) or sinuous (with u antisymmetric).

To determine the downstream evolution of the O(ϵ) per-
turbation, we take two approaches. First we specify a form of
initial forcing, via a small scale harmonic injection superim-
posed onto (9), and numerically (parabolically) march (u, φ, ψ, θ )
downstream in tandem with the spatially developing base flow.
Secondly, we address the stability locally as a bi-global eigen-
value calculation; the results from the two approaches will be
compared.

3.1. Parabolic disturbance equations

On writing u(x, η, ζ ) = f (x, η, ζ )/x, the linearised (ϵ ≪ 1)
perturbation equations arise from substitution of (10) into (4):

2fx = φη + ψζ , (11a)
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Fig. 1. Examples of the steady developing localised streak baseflow, as measured by the downstream velocity U . The streak is induced by injection at x0 = 10, with
an injection parameter of κ = 12. Two different downstream locations are shown, (a–c) at x = 11 and (d–f) further downstream at x = 14. The spanwise width of
the injection slot increases from top to bottom, with (a,d) C = 0.1, (b,e) C = 0.05 and (c,f) C = 0.025. The contours are shown at U = 0.1, 0.2, . . . , 0.9. Data points
in (a) are experimental results for U = 0.3, 0.5, 0.8, as shown in Fig. 3(b) of [7].

θ = ψη − φζ , (11b)

x−1
{
∇

2f + (ΦB + Φ̃)fη + (ζΨB + Ψ̃ )fζ + 2(UB + Ũ)f
}

+φ(U ′

B + Ũη) + ψŨζ
= 2(UB + Ũ)fx + 2f Ũx − 2iωf , (11c)

x−1
{
∇

2θ + (ΦB + Φ̃)θη + φ(Θ̃η + ζΘ ′

B) + ψ(ΘB + Θ̃ζ )

+ θζ (Ψ̃ + ΨB) + 2(UB + Ũ)θ
}

−2x−2
(
ζ (UB + Ũ)fη + ζ f (Ũη + U ′

B) − η(UB + Ũ)fζ − ηf Ũζ
)

= 2
(
(U ′

B + Ũη)ψx − Ũζφx + (UB + Ũ)θx − x−1(ζΘB + Θ̃)fx
)

+2
(
x−1(fηΨ̃x − fζ Φ̃x + f Θ̃x) − θ Ũx

)
− 2iωθ . (11d)

This system fully captures the spatial development of a pertur-
bation, provided that the disturbance exists on the same length
scales as the underlying localised streak. Computational results
require (parabolic) marching of (11) in addition to the steady
nonlinear streak flow, in x from suitable initial conditions. This
is achieved by applying the same second-order Crank–Nicolson
method as for the base flow. At each downstream position this
marching procedure provides the full disturbance field in the
cross-sectional (η, ζ ) plane, which is equivalent to the (y∗, z∗)
plane via the rescaling (1).

To excite the varicose mode we impose the same injection
profile for the harmonic perturbation, as given in (9), via

φ(x, ζ , η = 0) = F (x; x0)G(ζ ) , (12)

which corresponds to a linear amplitude modulation of the in-
jection. To excite a sinuous mode we correspondingly impose

φ(x, ζ , η = 0) = F (x; x0)ζ e−Cζ2 . (13)

Fig. 2 shows the evolution of varicose perturbations, as mea-
sured by the downstream velocity perturbation u evaluated at the

centreline ζ = 0. Shown are the development of two varicose
perturbations determined for C = 0.1 and a wider injection
region of C = 0.05 (both with κ = 12, x0 = 10). It is clear that
the streak induced by the wider injection region (C = 0.05) is
substantially more unstable with growth evident even at x = 20,
whilst the narrower injection region (C = 0.1) leads to a peak
growth near x = 14. The linear response has been normalised
such that |u| = 1 at x = x0, and the perturbation is seen to be
localised away from the boundary, centred around the displaced
shear layer of the streak. Fig. 2 overlays the base flow speed U , via
contours of U = 0.25, 0.5 and 0.75, with the disturbance mostly
centred between the 0.5 and 0.75 contours, but moving to higher
values of U as the downstream location x is increased.

In Fig. 3 we vary both the amplitude of injection κ and the
width of the injection region c , then determine a measure of local
growth rate σ to be

σ =
1
E
dE
dx
, where E =

(∫ ζ=∞

ζ=0

∫ η=∞

η=0
uu∗ dη dζ

) 1
2
, (14)

where the asterisk indicates a complex conjugation. The down-
stream behaviour of σ is shown from x = x0 = 10 to x = 12.
For κ = 12 the response is (locally) unstable σ > 0 and be-
comes increasingly unstable as C decreases (a widening injection
region). For the values of C covered, we find that the growth
of unstable sinuous modes is greater than any unstable varicose
modes. For the lower injection amplitude κ = 8 the streak starts
to stabilise to varicose modes. Restabilisation to sinuous modes
occurs at lower values of κ .

Fig. 4(a) shows the effect of variations in the excitation fre-
quency ω. As we shall show later, at high frequency (or far down-
stream) the growth rate scales linearly with frequency, which
leads to the collapse of the shown data for ω = 5, 10. Fig. 4(b)
similarly shows the influence of the excitation point moving fur-
ther downstream (with values of x0 = 5, 10, 20) demonstrating
no qualitative change.
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Fig. 2. The centreline ζ = 0 evolution of a varicose linearised harmonic perturbation of frequency ω = 5 for (a,b) C = 0.1 and (c,d) C = 0.05 for κ = 12 and x0 = 10.
Contours show the absolute value of the perturbation u(x, η, ζ = 0, η) in (a,c) and its real part in (b,d). In all cases the three contours shown as lines indicate where
the steady baseflow satisfies U(ζ = 0, η) = 0.25, 0.5, 0.75. The perturbation is normalised such that the peak value of |u| is unity at x = x0 .

Fig. 3. Spatial growth rates (14) obtained by parabolic marching (solid) and the
analogous local eigenvalues of (15) (points) for a range of disturbances and base
flows, imposed at x = x0 = 10. In the key, V denotes varicose modes, whilst S
denotes sinuous modes.

3.2. Local stability analysis

On taking a weakly non-parallel approach to the disturbance
equations (11) we can seek propagating wave solutions in the
form

(u, φ, ψ, θ ) =

(
x−1 f̃ (η, ζ ; x), φ̃(η, ζ ; x), ψ̃(η, ζ ; x), θ̃ (η, ζ ; x)

)
E ,

(15a)

where

E = exp
{
i
(∫ x

α(ξ ) dξ
)}

. (15b)

At each downstream position, this approach results in a bi-
global eigenvalue problem for α(x), but of course (whilst often
effective) this is not fully justified asymptotically, apart from in
the large-x or large-ω limit (as discussed below).

To determine the spectrum for α we apply the same non-
uniformly distributed numerical mesh (as used for the base flow),
with a second-order finite-difference scheme in ζ , η. This gener-
ates a (generalised) sparse matrix eigenvalue problem for (f̃ , φ̃,
ψ̃, θ̃ ) and α, associated to a given streak base flow (U,Φ,Ψ ,Θ)
as defined by (8). The matrix eigenvalue problem is tackled iter-
atively via a shift and invert method using the SLEPc library [28],

to find the most dangerous spatial mode (the most negative value
of αi).

In Fig. 3 we compare the local prediction of the growth rate
from the parabolic marching, as provided by (14) with the eigen-
value prediction for α. As seen from (15) there is a x−1 attenuation
of the exponential growth in u and this is accounted for by
comparing σ with −αi − x−1. The disturbance is centred about
x = x0 = 10 and by x = 11 there is good quantitative agreement
between the eigenvalue prediction and the parabolic marching
results for ω = 5.

Similar comparisons can be made for variations in the exci-
tation frequency and excitation position, as shown by the data
points in Fig. 4. As expected the agreement (at fixed x) is poorer
at lower frequencies (Fig. 4a), although at fixed values of ω we
expect the eigenvalues to provide improved quantitative predic-
tions as x is increased. This can be observed by rescaling x in (15)
in favour of a new coordinate downstream coordinate ωx.

Fig. 5 shows the (scaled) spatial growth rate obtained from
the eigenvalue problem for a range of frequencies at x = 11,
for the streak shown in Fig. 1(a). Both the varicose and sinuous
modes are shown, with the sinuous being most unstable in this
viscous problem. Further downstream at x = 12 Fig. 5(b) shows
a reduction in the growth rate for both classes of disturbance
symmetry, with a continued dominance of the sinuous mode.

The eigenfunctions associated with (15) are shown at x =

11, 12 in Fig. 6(a–b) (varicose) and 7(a–b) (sinuous) at ω = 5.
At these downstream positions, the eigenmodes are essentially
indistinguishable from the distribution of u obtained by parabolic
marching of (11), hence these are not shown.

3.3. Large-x inviscid (long-wave) stability

Sufficiently far downstream, on neglecting inverse powers of
x in (11) we directly recover

2iα f̃ = φ̃η + ψ̃ζ , (16a)

θ̃ = ψ̃η − φ̃ζ , (16b)

Ūηφ̃ + Ūζ ψ̃ = 2iα(Ū − ω/α)f̃ , (16c)

Ūηψ̃ − Ūζ φ̃ = −(Ū − ω/α)θ̃ , (16d)

where Ū = UB + Ũ is the downstream velocity distribution of the
streak. In terms of a disturbance-wave pressure

p = p̃(η, ζ ; x)E + c.c. , (16e)

the leading-order for large x satisfies

p̃η = iα(Ū − ω/α)φ̃ , (16f)
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Fig. 4. (a) The local (varicose) growth rate (divided by ω) as defined by (14) for a range of excitation frequency ω = 1, 5, 10 with κ = 12, C = 0.1, x0 = 10 in (9).
The growth rate scales linearly with ω at high frequency. (b) the growth rate obtained for an excitation frequency of ω = 5, when κ = 12, C = 0.1 and x0 = 5, 10, 20
in (9). In both (a,b) the data points show the local (eigenvalue) prediction of the growth rate provided by solution of the problem posed by (15).

Fig. 5. Spatial growth rate predictions using the local bi-global eigenvalue problem defined by (15) with (a) x = 11 and (b) x = 12. In each case the asymptotic
(long-wave Rayleigh) x ≫ 1 prediction of (17) is shown as a straight line segment. Both figures are for a streak induced by (9) using κ = 12, x0 = 10 and C = 0.1.

p̃ζ = iα(Ū − ω/α)ψ̃ . (16g)

From (16) we therefore recover the two-dimensional (long-wave
limit of the) pressure Rayleigh equation

∇
2p̃ =

2
Ū − ω/α

(
p̃ηŪη + p̃ζ Ūζ

)
, (17)

subject to

p → 0 as η2 + ζ 2 → ∞ (18)

as obtained in Hall & Horseman [29], Timoshin & Smith [30] and
Hocking [31] for example, on setting a zero wavenumber.

The eigenvalue problem (17) is tackled using the same iter-
ative sparse matrix formulation to determine the quantity ω/α,
from which we can infer a value for αi/ω. This value provides
the asymptotic behaviour for (15) for increasing frequency or
downstream position. Fig. 5 shows the predictions of (17) as
the horizontal line segments, and these are approached as ω
increases.

3.4. ‘Upper-branch’ modes

The previous eigenvalue problems rely on downstream wave-
lengths of the perturbation being sufficiently long compared to
the local boundary-layer thickness. This assumption requires that

ω ≪ Re1/2/(2x)1/2. At higher frequencies ω or (equivalently)
when sufficiently far downstream (x ≫ 1), the wavelength of
the disturbance must eventually become comparable to the local
boundary-layer thickness. In this limit we can formally recover
an eigenvalue problem for the spatial growth rate via a parallel
flow assumption applied in the usual manner, by inclusion of the
corresponding shorter length scale (X) and faster time scale (T ):

X = Re1/2x , T = Re1/2t . (19)

The harmonic behaviour of the waves is then

exp {i (α̃X − ω̃T )} , (20)

where α̃ = (2x)−1/2ᾱ, ω̃ = (2x)−1/2ω̄. The corresponding form of
(17) is

(∇2
− ᾱ2)p̃ =

2
Ū − ω̄/ᾱ

(
p̃ηŪη + p̃ζ Ūζ

)
, (21)

again subject to (18). This is the full Rayleigh pressure equation,
see for example [29].

For fixed ω̄ (21) represents a challenging bi-global polynomial
eigenvalue problem for the complex wavenumber ᾱ. Rather than
dealing with this polynomial nature, we take an alternative ap-
proach. We solve (21) as a nonlinear problem for the unknowns of
p̃ (at all nodal positions in the ζ–η plane) plus the complex value
of ᾱ via Newton iteration. To add ᾱ as a single additional degree
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Fig. 6. Varicose eigenmodes showing the absolute value of the perturbation to the downstream flow velocity (|u|), as obtained from the local eigenvalue problem
(15) with ω = 5 at (a) x = 11 and (b) x = 12. Also shown are the corresponding inviscid eigenmodes with ω̄ = 0.45 at (c) x = 11 and (d) x = 12. The eigenmodes
are each normalised to a unit maximum, and each figure also shows contours of the downstream base flow velocity U = 0.25, 0.5, 0.75. The (red online) data
points in (a) indicate maxima of experimentally obtained varicose eigenmodes at the same downstream position, as given in Fig. 7(a) of [7].

Fig. 7. Sinuous eigenmodes showing the absolute value of the perturbation to the downstream flow velocity (|u|), as obtained from the local eigenvalue problem
(15) with ω = 5 at (a) x = 11 and (b) x = 12. Also shown are the corresponding inviscid eigenmodes with ω̄ = 0.45 at (c) x = 11 and (d) x = 12. The eigenmodes
are each normalised to a unit maximum, and each figure also shows contours of the downstream base flow velocity U = 0.25, 0.5, 0.75. The (red online) data
points in (a) indicate maxima of experimentally obtained sinuous eigenmodes at the same downstream position, as given in Fig. 7(b) of [7].

of freedom, we compensate by setting one of the pressure degrees
of freedom to unity; thereby normalising the eigenmode. The
advantage of this approach is that we avoid the polynomial nature
of the eigenvalue problem, but this being an iterative method, we
require a good initial guess and only recover one mode rather
than a subset of the full spectrum. For the initial guess we use a
long-wave eigenmode obtained from (17) at a small value of ω̄.

Fig. 8 shows the dependence of the most dangerous mode’s
growth rate −αi, as determined from (21) with κ = 12 (x0 = 10,
C = 0.1) over a range of ω at x = 11 and x = 12 for both the
varicose and sinuous mode. We see behaviour that is in line with
the experimental observations of Asai et al. [7], with a varicose
instability providing a peak growth rate initially, but that the
varicose mode rapidly becomes more stable as the streak devel-
ops/decays downstream. Further downstream the most unstable
mode is sinuous, and this sinuous mode’s growth rate is less
sensitive to downstream position. We also see that the sinuous
mode restabilises at a lower frequency than the varicose mode.

Examples of the inviscid eigenmode for u are shown in
Fig. 6(c,d) for varicose modes and Fig. 7(c,d) for sinuous modes.
As in the time-marched stability results of [13], and the ex-
perimental measurements of [7] the varicose mode peak near

the maximum of transverse shear but there is no such simple
correlation of the sinuous mode with the peak of spanwise shear.
Both varicose and sinuous modes extend around the majority of
the shear layer that is the streak boundary. A further comparison
with experimental observations follows.

4. Experimental comparisons

The presence of comparable growth rates for both varicose
and sinuous instabilities near to the source of a localised streak
has been observed experimentally by Asai et al. [7] and it is
worthwhile to consider how our current formulation applies to
that configuration.

The experiments of Asai et al. [7] placed a 7.5 mm wide mesh
screen 500 mm from the leading edge of a thin plate, in a uniform
freestream flow of 4m/s. The height of the screen was 2.4 mm,
which was also the displacement thickness of the corresponding
(undisturbed) Blasius boundary layer at x∗

= 500mm. As a
result of the nonlinear perturbation caused by the mesh screen to
the otherwise two-dimensional (Blasius) flow, an isolated streak
develops downstream. This streak has an aspect ratio of O(1)
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Fig. 8. Spatial growth rates obtained from solution of the inviscid equation (21) for a streak baseflow driven by κ = 12, C = 0.1 and x0 = 10 in (9) evaluated at (a)
x = 11 and (b) x = 12. In each case the long wave ω̄ ≪ 1 asymptote is shown as a straight line segment. Data points in (a) are the observed (non-dimensionalised)
growth rates presented in [7], at x∗

= 550mm, as discussed in Section 4.

in the cross sectional plane, matching the scalings of (1). The
stability of the streak is then examined by localised harmonic
(acoustic) excitation at x∗

≈ 510 − 515mm.
Although no systematic study was undertaken in [9], quanti-

tative agreement between the [7] experimental data for a steady
streak has been obtained along the centreline (z∗

= 0) over a
range of x∗

= 550 to 700 mm with parameter values of κ = 12,
γ = 10, C = 1/10 and x0 = 10 in (9). We therefore take
this streak base flow as an approximation of the experimental
configuration [7] and determine its (spatial) stability properties.
A similar approach was taken in the DNS work of [13], by choos-
ing a suitable body force term to represent the experimentally
obtained streak flow data.

For x0 = 10, to relate the dimensionless problem herein to
the experimental configuration requires L∗

= 50mm, leading to
a global Reynolds number of Re = 13,542. Given this Reynolds
number, the dimensional cross sectional coordinates are

(y∗, z∗) = L∗Re−1/2(2x)1/2(η, ζ ) ≈ 2(η, ζ )mm, (22)

at x∗
= 550 mm (x = 11). Apart from a dimensional factor

of 2mm, the cross sectional results for C = 0.1 and κ =

12 in Fig. 1(a,d), 6 and 7 can be directly compared with the
experimental data of [7].

The contours of the eigenmode component |u| for this streak
base flow are shown in Fig. 6(a,c) (varicose) and Fig. 7(a–c) (sin-
uous) at x = 11. The eigenmode shape is relatively insensitive to
frequency over a broad range and (for a qualitative comparison)
we also show the dimensionless position of the maxima of |u|
for the experimental data of [7] as obtained at (x∗

= 550 mm,
x = 11) with 110 Hz (varicose) and 60 Hz (sinuous) forcing.

A more sensitive comparison can be made of the spatial
growth rates observed at x∗

= 550mm in Figs. 11 and 13 of [7]
to either the viscous prediction of Fig. 5 or the inviscid results of
Fig. 8. The data of [7], for the baseflow of Fig. 1(a), are shown in
Fig. 8.

The lowest excitation frequency in the experimental results is
40 Hz. This yields a value of ω = π in (15), and ω(2x/Re)1/2 ≈

0.127 suggesting we are potentially in the viscous response
regime . The relevant viscous prediction is given by Fig. 5, which
gives a growth rate of 0.019 mm−1 for the varicose mode. The
measured experimental value is 0.022 mm−1.

The peak varicose growth rate in the experimental configura-
tion is at 110 Hz, with ω(2x/Re)1/2 ≈ 0.35. This is in the inviscid
regime of Fig. 8 with a predicted growth rate of 0.062 mm−1

compared to the observed value of 0.055 mm−1. The peak pre-
dicted value for an inviscid varicose mode in Fig. 8 corresponds
to a dimensional frequency of nearer 140 Hz, with a value of
0.067 mm−1. Similarly, the sinuous modes at x∗

= 550mm

as reported by [7] give a peak growth rate of approximately
0.032 mm−1 at 50 Hz. The prediction of Fig. 8 translates to a peak
dimensional growth rate at 50 Hz of 0.041 mm−1.

5. Discussion

Isolated steady low-speed streaks in a Blasius boundary layer
can be captured by a parabolised (and asymptotically-rigorous)
form of the Navier–Stokes equations obtained in the high
Reynolds number limit (the ‘boundary-region equations’). Being
parabolic in x, this governing system is an efficient method of
obtaining fully nonlinear, non-parallel streaks in an otherwise
two-dimensional developing layer, and are in essence the Görtler
vortex equations applied to a localised structure with no curva-
ture. Whilst there is some similarity in the governing system with
that of the Parabolised Navier–Stokes Equations [32], there are also
some important differences. Although the latter have proved to
be a popular tool, especially to the aerospace community (being
considerably faster computationally than DNS computations),
their basic formulation is not asymptotically rigorous, and this
is reflected in the need for ad-hoc restrictions in the choice of
numerical parameters.

We focus attention on streaks that are driven by localised
injection (but with zero net mass flux), and hence the streak
decays downstream, with the far-downstream flow returning to
a Blasius profile. The (steady) downstream evolution of a streak
has been addressed previously in [9]. This work shows that the
same governing equations in their unsteady form (4) can also
be used to formulate parabolic linearised perturbation equations
(11) which can be computed in tandem with the (streak) base
flow. Downstream of a (temporally) periodic disturbance gen-
erator, we obtain ‘transient’ growth of perturbations prior to
their ultimate decay as the streak amplitude itself decreases.
We also formulate a weakly non-parallel eigenvalue approach to
the spatial stability (15) of the streak, again based on the same
boundary-region formulation and demonstrate consistency with
the spatially marched evolution of a perturbation sufficiently far
from the disturbance generator.

As the frequency of any (linear) disturbance generator in-
creases, or equivalently if a disturbance is followed sufficiently far
downstream, we pass through a long-wavelength Rayleigh region
(17), and yet further downstream, we ultimately recover the full
pressure Rayleigh equation for the disturbance (21).

For the streaks examined herein, the sinuous modes are al-
ways more dangerous for sufficiently long downstream wave-
lengths. However, as the frequency of excitation increases, in
the Rayleigh regime, we find that varicose modes can dominate
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the response near the injection region centred at x = x0. How-
ever, the peak growth rate of the inviscid varicose mode decays
more rapidly downstream and again the sinuous mode eventually
dominates; this is clearly seen in Fig. 8.

We conclude that isolated streak flows are well captured by
the system (4) and allow for effective predictions of both the
steady streak and its spatial instability. The parabolic nature of
(4) in the associated Re ≫ 1 limit allows for an efficient com-
putation of the streak/stability flow features. Despite the ad-hoc
modelling of the experimental streak generation mechanism as a
localised injection, the quantitative predictions have a good level
of consistency with observations. In addition we also recover the
qualitative features of (i) dominance of a varicose mode near x =

x0, (ii) more rapid decay of the varicose instability for increasing
x − x0 and a changeover to sinuous modes as the most unstable
and (iii) restabilisation of the sinuous mode at a lower frequency
than the varicose mode.
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