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ASYMPTOTICS OF COUPLED REACTION-DIFFUSION FRONTS
WITH MULTIPLE STATIC AND DIFFUSING REACTANTS:

URANIUM OXIDATION IN WATER VAPOR\ast 

S. R. MONISHA NATCHIAR\dagger , RICHARD E. HEWITT\dagger , PHILLIP D. D. MONKS\ddagger , AND

PETER MORRALL\ddagger 

Abstract. Large-time asymptotic solutions for the reaction-diffusion front between one static
reactant and one diffusing reactant are known. These states apply to single-step reactions with a
mean-field reaction rate proportional to \rho m\alpha n (with m,n \geq 1), where \rho , \alpha are concentrations of the
diffusing and static reactants, respectively. Such reaction kinetics commonly arise in, for example,
simple corrosion models of a porous solid, subject to a diffusing reactant. Here we address a more
complex two-step corrosion reaction for oxidation of uranium in a water-vapor environment. In this
case, additional complexity arises through a pair of coupled reaction fronts (one with m = 2, n = 1
and the other with m = 3, n = 1). Furthermore, we allow for material expansion owing to the
corrosion process and a strong dependence of diffusion coefficients on the static reactant distribution.
In the large-time limit there are four main asymptotic regions, comprising two diffusion layers and two
reaction fronts. Asymptotic matching of these regions allows us to construct a large-time solution that
gives analytical predictions for the positions of the two propagating fronts, thickness of the diffusion
layers, and concentration of diffusing species outside of the fronts. This is the first mechanistic model
of uranium oxidation in water vapor and predicts a thin propagating subsurface (hydride) layer, as
recently observed in atom-probe tomography experiments.
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1. Introduction. When uranium is placed in a water-vapor environment, an
oxide layer grows at exposed surfaces. For moderate exposure times, this oxide layer is
adhered to the underlying metal and its rate of growth decreases with time. For longer
exposures a secondary stage is found, where cracking and spalling of the oxide layer
occur, and the subsurface oxide interface then propagates into the bulk material with
approximately constant velocity. While there are a number of empirical studies (e.g.,
Baker et al., 1966; Colmenares, 1975; Ritchie, 1984; Winer et al., 1987; McGillivray
et al., 1994; Scott et al., 2011) of uranium oxidation in water vapor, to the best of the
authors' knowledge there is no well-established mechanistic view of the underlying
physical and chemical processes. Furthermore, although simplistic ``models"" (e.g.,
Haycock, 1959) have been fitted to empirical data, these typically have a limited
connection with underlying mechanisms, and there is no theoretical/computational
model available that ties observable quantities to the parameters that govern the
proposed chemical/physical processes.

In a step-change from earlier work, the recent experimental study of Martin et al.
(2016) has explicitly analyzed the subsurface structure of uranium following exposure
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to moist air via atom-probe tomography (APT). Their results provide new insight into
the mechanisms of oxidation, most notably by detecting the presence of hydroxide ions
in the oxide layer, and for the first time explicitly demonstrating the presence of a hy-
dride layer (approximately 5nm thick after one hour of exposure) between the surface
oxide and the bulk metal. Similar experiments using exposure to a D2O environment
showed deuterides present between the oxide and metal regions, clearly indicating that
this intermediate layer arises by diffusion from the ambient and a reaction within the
bulk metal. The clarification offered by this APT approach prompts us to pursue a
new theoretical model not only to explain the origin of the recently observed hydride
layer but also to predict oxidation rates for moderate exposure times.

Before we introduce a model specific to uranium oxidation, it is instructive to
review briefly the broader (reaction-diffusion) literature associated with material cor-
rosion modeling. Slow (diffusive) corrosion of a medium owing to the presence of a
reactant is a well-established process. The simplest such mechanism is underpinned
by an A+ B \rightarrow C chemical reaction between diffusing reactants A,B to produce an
inert product C. A feature of these systems is the presence of a ``reaction front,""
which propagates into the medium and separates regions of high concentrations of A
and B. The reaction is spatially localized at this moving front, leaving behind the
inert product (C) as it moves. As this inert diffusion layer grows, flux of reactant
to the front is reduced and the process slows, reducing the propagation speed of the
front. Typically the diffusion layer thickens as t1/2, leading to a decreasing t - 1/2 flux
of reactant to the front. Systems such as these can often be formulated as a simpler
Stefan problem by neglecting the details within the reaction fronts themselves and
focusing purely on the larger diffusive lengthscale; a formal link between the reaction-
diffusion approach and Stefan formulation was given in the work of Hilhorst et al.
(1996).

Theoretical understanding of the reaction fronts in these problems owes much
to the work of G\'alfi and R\'acz (1988), which assumed a one-dimensional mean-field
model with second-order reaction kinetics of the form

\partial a

\partial t
= Da

\partial 2a

\partial z2
 - kab ,

\partial b

\partial t
= Db

\partial 2b

\partial z2
 - kab .(1.1)

Here kab is (dimensionally) a reaction rate density, but we will retain the more com-
mon terminology of ``reaction rate"" with k the ``reaction rate constant,"" where a, b are
the concentrations of A,B, which have (constant) diffusion coefficients Da,b > 0. The
initial state corresponds to two regions, of nonzero a or b, separated by an interface.
Much of the focus in this initial work was placed on the case of Da = Db, and at large
times the reaction rate was shown to take the form

kab \sim k t - 2/3F

\biggl( 
z  - zf
t1/6

\biggr) 
,(1.2)

where zf = O(t1/2) is the moving front position and the functional form (F ) decays
in the far field. The reaction is therefore localized around the zf position, in a
layer of thickness O(t1/6) and diminishing in magnitude. A later consideration of
the more general case (with Da \not = Db and varied initial concentrations) by Koza
(1996) confirmed the assertion of G\'alfi and R\'acz that the exponents in (1.2) are not
dependent on these parameters.

Subsequent computational work (using random walks on a square lattice) by
Jiang and Ebner (1990) confirmed the appearance of the predicted lengthscales but
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also pointed towards a separate class of behavior when one of the diffusion coefficients
is zero. This result was also reinforced by the later analysis of Koza (1997). This issue
is significant for the corrosion of a solid, as the reaction is typically between a diffusing
species (A, say) and a static porous solid (B); hence one of the reactants is immobile
and it is appropriate to consider Db = 0. Notably, this theoretical approach has
been validated in the experimental work of L\'eger et al. (1999), which exposed copper
clusters to cupric chloride.

Theoretical work was continued by Bazant and Stone (2000), who tackled the
special case of Db = 0, while also allowing for higher-order reaction kinetics, replacing
kab with kambn with m,n \geq 1. They demonstrated that propagating front solutions
still exist, but the reaction rate (1.2) now becomes

k ambn = k t - \lambda 1F

\biggl( 
z  - zf
t\lambda 2

\biggr) 
, where \lambda 1 =

m

m+ 1
, \lambda 2 =

m - 1

2(m+ 1)
.(1.3)

Given this background for a single reaction-diffusion front between two species,
we now return our attention to a more complex corrosion reaction relevant to uranium
oxidation. When uranium is exposed to a water-vapor (H2O) environment, it leads
to the slow diffusive growth of an oxide layer at the exposed surface. It has been
proposed by several authors (e.g., Baker et al., 1966; McGillivray et al., 1994) and
strongly supported by the recent APT work of Martin et al. (2016) that the diffusing
reactant in this scenario is the hydroxide ion (OH--) derived from ambient H2O via
a surface process. Although the stoichiometric chemical reaction for the corrosion
process can be approximated by

U(s) + 2H2O(g) UO2(s) + 2H2(g) ,(1.4)

even early experimental evidence indicated a hydrogen deficit in the gas phase product.
As noted above, only recently has the origin of this deficit been directly observed in
the form of a subsurface layer of UH3 in the APT experiments of Martin et al. (2016).
A schematic overview of the domain is shown in Figure 1, where the surface oxide
layer remains separated from the bulk material by the subsurface hydride region.

In this work, we follow a newly proposed reaction scheme (Glascott and Findlay,
2019), which proceeds with the following elementary steps within the material:

UH3 + 2OH-- k\ast 1
UO2 + 5H + 2 e-- ,(1.5a)

U + 3H
k\ast 2

UH3 ,(1.5b)

where chemical state symbols have been omitted for simplicity. A surface reaction
scheme that links with the reactants and products of (1.5) to give an overall reaction
of (1.4) is

2H2O+ 2O2--
l 2OH--

l + 2OH-- ,(1.6a)

2 e-- + 2OH--
l 2O2--

l +H2 ,(1.6b)

2H H2 ,(1.6c)

where the subscript l represents lattice-bound species. In this scheme, dissociation
of H2O occurs at the surface via interaction with an O2--

l anion in (1.6a) to form
the diffusing OH-- species and a nondiffusing OH--

l. Formation of the H2 product
proceeds according to the two concurrent mechanisms of (1.6b) and (1.6c), with the
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UO2 (layer A)

UH3 (layer B)

U (bulk)

] Front 1: z = z1(t)

] Front 2: z = z2(t)

z = zs(t)

z \rightarrow  - \infty 

Water vapor

Fig. 1. Schematic diagram of the truncated domain and its typical structure. As the reaction
proceeds, U is converted to UH3 at reaction front 2, while UH3 is converted to UO2 at reaction front
1. The two reaction fronts propagate ``downwards"" into the bulk material, while the upper surface
zs(t) moves upwards to accommodate the density reductions associated with the conversion to UH3

and UO2. In the initial state we take zs(0) = 0.

former consuming electrons produced by the bulk reaction (1.5) and regenerating
O2--

l. In what follows we will not keep account of the electron production in (1.5)
and will assume that the surface processes (1.6) can be reduced to simple Dirichlet
boundary conditions for concentrations of [OH--] and [H ].

Key to the bulk reaction (producing UO2 from U) is that it is a two-step process,
with UH3 acting as an intermediate in the formation of UO2. The solid phases UH3,
U, and UO2 (uranium hydride, uranium, and uranium dioxide) are ``static,"" while the
mobile diffusing species are H , OH-- (hydrogen radicals and hydroxide ions). Although
we retain the term ``static"" (as used by, for example, Bazant and Stone, 2000) for the
nondiffusing quantities, we will allow for expansion of the material during corrosion,
as necessitated by the substantial decrease in density when U is converted to UO2 (or
UH3).

Our aim in this work is to present a theoretical analysis of a corresponding mean-
field model for this more complex reaction system (1.5). In particular we wish to
establish if a one-dimensional diffusion-advection-reaction model leads to a sustained
propagating intermediate hydride layer (as observed in recent experiments by Martin
et al. (2016)). To achieve this we first formulate a dimensionless problem (section 2)
before presenting some brief numerical solutions in section 3. Our primary approach
will be via the analytical/asymptotic methods of section 4 (rather than a purely
computational approach), which will allow us to explicitly determine the dominant
parameters that govern the corrosion process and, in particular, what sets the thick-
ness of any resulting hydride layer and oxidation rate. We validate the asymptotic
theory using large-time results from the numerical solutions in section 5.

2. Formulation. The analogous system to (1.1) for the more complex reaction
(1.5) requires two diffusing species with concentrations \rho \ast 1,2 and three ``static"" (non-
diffusing) concentrations \alpha \ast 

1,2,3, where

(\rho \ast 1, \rho 
\ast 
2) \equiv ([OH--], [H ]) , (\alpha \ast 

1, \alpha 
\ast 
2, \alpha 

\ast 
3) \equiv ([UH3], [U], [UO2]) .(2.1)
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The index notation is chosen such that the first and second reactions in (1.5) involve
reactions between quantities with subscripts 1, 2, respectively.

A standard one-dimensional mean-field model is (in terms of dimensional quanti-
ties, as indicated by the asterisk)

\partial \rho \ast 1,2
\partial t\ast 

+
\partial 

\partial z\ast 
\bigl( 
v\ast \rho \ast 1,2

\bigr) 
=

\partial 

\partial z\ast 

\biggl( 
D\ast 

1,2

\partial \rho \ast 1,2
\partial z\ast 

\biggr) 
+ r\ast 1,2 ,(2.2a)

\partial \alpha \ast 
1,2,3

\partial t\ast 
+

\partial 

\partial z\ast 
\bigl( 
v\ast \alpha \ast 

1,2,3

\bigr) 
= R\ast 

1,2,3 .(2.2b)

As noted above, while the densities of UO2 and UH3 are (roughly) comparable, the
density of U is substantially higher, and this results in an advection (with velocity
v\ast ) of material in a direction opposite to the propagating reaction fronts.

The nonlinear reaction terms r\ast 1,2 and R\ast 
1,2,3 are defined using the rate law which

has a power law structure, that is, proportional to \rho \ast mi \alpha \ast n
j , where m and n are the

kinetic orders of the reaction. The corresponding reaction source/sink terms are

(r\ast 1 , r
\ast 
2) =

\bigl( 
 - 2k\ast 1 \rho 

\ast 2
1 \alpha \ast 

1 , 5k\ast 1 \rho 
\ast 2
1 \alpha \ast 

1  - 3k\ast 2\rho 
\ast 3
2 \alpha \ast 

2

\bigr) 
,(2.3a)

(R\ast 
1, R

\ast 
2, R

\ast 
3) =

\bigl( 
k\ast 2 \rho 

\ast 3
2 \alpha \ast 

2  - k\ast 1\rho 
\ast 2
1 \alpha \ast 

1 ,  - k\ast 2 \rho 
\ast 3
2 \alpha \ast 

2 , k\ast 1 \rho 
\ast 2
1 \alpha \ast 

1

\bigr) 
.(2.3b)

In addition to the diffusing and static reactants, and the advection owing to mate-
rial expansion, (2.2) also allows for the diffusion coefficients to vary with concentration
of the static components, that is,

D\ast 
1,2 = D\ast 

1,2(\alpha 
\ast 
1,2,3) .(2.4)

This is motivated by the application, where we anticipate substantial changes in diffu-
sivity of H in the intermediate UH3 phase, based on the results of Peretz et al. (1976).
We will however assume that the diffusivity of mobile reactants 1, 2 is independent of
\rho \ast 1,2 at the (small) concentration levels of interest.

2.1. A dimensionless problem. The reaction is assumed to be driven by a
fixed concentration of OH-- at the surface of the material, and we denote this constant
value as C\ast . Similarly the three static reactants have known maximum concentra-
tions N\ast 

1,2,3 for pure phases of uranium hydride (4.54 \times 10 - 2 mol/cm3), uranium
(8.03\times 10 - 2 mol/cm3), and uranium dioxide (4.06\times 10 - 2 mol/cm3), respectively. To
nondimensionalize the concentrations we therefore introduce

\alpha \ast 
1,2,3(z

\ast , t\ast ) = N\ast 
1,2,3\alpha 1,2,3(z, t) , \rho \ast 1,2(z

\ast , t\ast ) = C\ast \rho 1,2(z, t) .(2.5a)

For the dimensionless timescale t we make use of one of the two reaction rates; then
the corresponding lengthscale is obtained from a chosen reference diffusivity value,
D\ast 

ref (which we will choose later):

t\ast =
1

k\ast 2C
\ast 3 t , z\ast =

\biggl( 
D\ast 

ref

k\ast 2C
\ast 2N\ast 

2

\biggr) 1
2

z .(2.5b)

A velocity scale follows directly from the ratio of lengthscales and timescales.
The resulting dimensionless system is now

\epsilon 

\biggl\{ 
\partial \rho 1,2
\partial t

+
\partial 

\partial z
(v\rho 1,2)

\biggr\} 
=

\partial 

\partial z

\biggl( 
D1,2

\partial \rho 1,2
\partial z

\biggr) 
+ r1,2 ,(2.6a)

\partial \alpha 1,2,3

\partial t
+

\partial 

\partial z
(v\alpha 1,2,3) = R1,2,3 ,(2.6b)
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where

(r1, r2) =
\bigl( 
 - 2k1 \rho 

2
1\alpha 1 , 5k1 \rho 

2
1\alpha 1  - 3\rho 32\alpha 2

\bigr) 
,(2.6c)

(R1, R2, R3) =

\biggl( \bigl( 
\rho 32\alpha 2  - k1\rho 

2
1\alpha 1

\bigr) N\ast 
2

N\ast 
1

,  - \rho 32\alpha 2 , k1 \rho 
2
1\alpha 1

N\ast 
2

N\ast 
3

\biggr) 
,(2.6d)

and D1,2 are the spatially varying nondimensional diffusivities. The dimensionless
parameter \epsilon = C\ast /N\ast 

2 is a measure of the surface concentration of diffusing reac-
tant relative to a reference static reactant, while k1 = k\ast 1N

\ast 
1 /(k

\ast 
2N

\ast 
2C

\ast ) is a relative
measure of the two reaction rate constants in (1.5).

In cases of interest, namely oxidation in ambient conditions (room temperature
and pressure), the relative concentration of diffusing reactants to static reactants is
very small, leading to \epsilon \ll 1. For example, using concentrations of water in the
ambient gas as a proxy for the surface concentration of OH-- (at room temperature)
yields \epsilon \approx 10 - 5. We therefore make a quasi-steady approximation for the diffusion
processes, but we will retain k1 as a parameter. In the subsequent analysis we will
demonstrate that it is possible to rescale a reaction front width to account for any
arbitrarily large k1 associated with the limit of \epsilon \ll 1.

The dimensionless quantities \alpha i are in essence volume fractions of the three static
components that comprise the bulk material, where \alpha 1 +\alpha 2 +\alpha 3 = 1. The advection
velocity associated with material expansion can be determined via

\partial v

\partial z
= \rho 32\alpha 2

\biggl( 
N\ast 

2

N\ast 
1

 - 1

\biggr) 
+ k1\rho 

2
1\alpha 1

\biggl( 
N\ast 

2

N\ast 
3

 - N\ast 
2

N\ast 
1

\biggr) 
,(2.6e)

as obtained by addition of the \alpha 1,2,3 equations. In the case of interest N\ast 
1 \approx N\ast 

3 ,
while N\ast 

2 \approx 2N\ast 
1 , which leads to v being an increasing function of z (i.e., the material

expands during corrosion).
For the spatially varying diffusion coefficients, we use a linear combination of

the pure-phase diffusion coefficients weighted by the respective volume fractions of
the static components (Polanowski and Koza, 2006; Ostoja-Starzewski and Schulte,
1996). The effective diffusivities of \rho 1 (OH--) and \rho 2 (H ) are therefore

D1,2 =
\sum 

j=1,2,3

D
(j)
1,2\alpha j ,(2.7)

where the D
(j)
i are the dimensionless diffusion coefficients for reactant i in a pure

phase with \alpha j = 1. By choosing D\ast 
ref in (2.5b) to be the diffusion coefficient of OH--

in UO2, we can take D
(3)
1 = 1.

Our aim is to evolve (2.6) forward in time (with \epsilon = 0), subject to boundary
conditions of

\rho 1 = 1 , \rho 2 = 0 at z = zs(t)
(\alpha 1, \alpha 2, \alpha 3) \rightarrow (0, 1, 0) , as z \rightarrow  - \infty 

\biggr\} 
for t \geq 0 .(2.8)

Here zs(t) is the advecting surface of the expanding solid (such that \.zs(t) = v(z =
zs(t)) and zs(0) = 0), which is in contact with the atmosphere, leading to a unit
concentration for \rho 1 (OH--) by choice of the nondimensionalization. The zero condition
for \rho 2 (H ) is chosen because outgassing of H2 is observed experimentally, arising from
recombination of H at the surface of the material (H2 itself being only weakly soluble
in UO2; see, for example, Banos et al. (2018)). Far from the surface forcing (as
z \rightarrow  - \infty ), we expect to recover an unreacted solid (with only U present).
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(a)

(b)

(c)

(d)

(e)

z z

z z

z

t

t

Fig. 2. Development of the dimensionless concentrations in the z  - t plane for a numerical

solution of (2.6) with k1 = D
(j)
i = 1. Contours of concentration of each static component are shown

in (a) \alpha 1, (b) \alpha 2, and (c) \alpha 3. Contours of concentration for diffusing species are shown in (d) \rho 1
and (e) \rho 2.

The initial conditions applied to (2.6) are not critical, beyond there being some
initial \alpha 1 (UH3) or \rho 2 (H ), as required to initiate the reaction (1.5). Low levels of
hydrogen are found to be present in metals and may exist either as microscopic hydride
sites or collocated with other impurities. The precise choice of initial conditions
employed in numerical solutions is given in Appendix A.

3. Typical numerical results. Before we develop an asymptotic solution in
detail, it is helpful to review some exemplar evolutions of (2.6). Numerical solutions
are obtained by a Crank--Nicolson time-marching scheme, applied to a second-order
accurate finite-difference discretization in z. To handle the nonlinear nature of the
reaction terms, we employ a Newton iteration at each time level. We deal with
the growing computational domain by reformulating (2.6) in terms of a transformed
coordinate that remains fixed as the solid expands during corrosion; the details of this
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−100 −80 −60 −40 −20 0
0
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1

0.8

0.6

0.4

0.2

(a)

(b)

z

\alpha 2
\alpha 1 \alpha 3

\rho 2

\rho 1

\alpha 2 \alpha 1 \alpha 3

\rho 2

\rho 1

Fig. 3. Dimensionless concentrations of the static \alpha 1,2,3 and diffusing \rho 1,2 reactants as mea-

sured at t = 2000 for k1 = 10 and (a) D
(1)
2 = 1, (b) D

(1)
2 = 0.01; D

(j)
i = 1 for (i, j) \not = (2, 1).

Reduction of the diffusion coefficient D
(1)
2 is seen to reduce the thickness of the intermediate \alpha 1 \not = 0

(UH3) layer. Vertical dashed lines denote the corresponding reaction front locations; here determined
to be the position of maximum \rho 21\alpha 1 (right) and \rho 32\alpha 2 (left).

formulation can be found in Appendix A.
In Figure 2(a)--(e) we present contours in the (z, t) plane of \rho 1,2 and \alpha 1,2,3, for

an evolution of (2.6) with k1 = 1 and D
(j)
i = 1 for i = \{ 1, 2\} , j = \{ 1, 2, 3\} . This

corresponds to the reaction rate constants in (1.5) being equal and both diffusing
species having equal diffusion coefficients (uniformly throughout the whole domain).
The concentrations of the diffusing species \rho 1,2 are shown on the right-hand side of
Figure 2. The surface forcing of \rho 1 is clearly visible, while \rho 2 can be seen to attain
a maximum value within the domain interior, being produced at a reaction front.
Growth of the material surface, away from the z = 0 initial position, can also be
observed in all subfigures, arising from the density change associated with reaction of
higher density metal (volume fraction \alpha 2) to produce lower density hydride and oxide
(\alpha 1,3). The left-hand side of Figure 2 shows concentrations of the static components,
where a growing layer of \alpha 3 = 1 is produced near the surface of the domain, separated
from the unreacted region (\alpha 2 = 1) by a propagating (and thickening) layer of \alpha 1 = 1.
Transitions between these layers occur through a pair of propagating reaction fronts.

Figure 3 shows a snapshot of \rho 1,2 and \alpha 1,2 at a large but fixed time value (t =

2000). Subfigure (a) shows the solution for k1 = 10, D
(j)
i = 1, while (b) shows the

influence of a lower diffusivity of D
(1)
2 = 0.01 (with all other diffusion coefficients

remaining at unity). In both figures the surface of the material has evolved from its
initial position at z = 0, expanding to a higher value owing to the density change
induced by the reactions.

Figure 3(a) shows the ``upper"" diffusion layer (\alpha 3 = 1) from z \approx  - 20 to z \approx 40,
while near z \approx  - 20 the first reaction front is associated with a sudden reduction in
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\alpha 3 and corresponding increase in \alpha 1. A second reaction front is found at z \approx  - 40,
where \alpha 1 decreases back to zero with an increase in \alpha 2 to unity. At larger times these
two reaction fronts (typically) separate further, leaving a propagating (and widening)
layer of \alpha 1 = 1 in the intermediate layer.

The influence of the associated parameters in (2.6) will be clarified in the asymp-
totic descriptions below. At this stage we simply note the role played by a reduction of

diffusion coefficientD
(1)
2 on the thickness of the intermediate layer in the Figures 3(a)--

(b). As this diffusion coefficient is reduced, the two reaction fronts are brought closer
together; we will revisit this issue below as it is of some practical concern in uranium
oxidation.

4. Asymptotic results. Our goal here is to present an analytical (matched)
asymptotic solution to (2.6) in the large-time limit. As part of this process we show
how the two reactions generally occur in spatially separated locations, but the full
solution remains coupled. Our asymptotic solution not only highlights the dominant
physical features but also (analytically) determines the spatial positions of both the
reaction fronts, concentrations of the species outside of the fronts, the velocity of the
material expansion, and the rate of oxidation.

4.1. The general case: \bfitD 
(\bfitj )
\bfiti \not = 0. Based on exemplar numerical results, we see

that the coupled reaction system (1.5) leads to two propagating reaction fronts that
are spatially separated by an intermediate layer (B). In terms of the static component
concentrations denoted by \alpha i we see three main regions: layer A (an oxide layer,
\alpha 3 = 1), layer B (a hydride layer, \alpha 1 = 1), and the remaining unreacted bulk (a metal
layer, \alpha 2 = 1), as shown in the schematic of Figure 4 (and Figure 1).

These three regions are separated by two propagating reaction fronts, front 1
(between layer A and layer B) where k1\rho 

2
1\alpha 1 is nonzero and front 2 (between layer

B and the remaining bulk metal) where \rho 32\alpha 2 is nonzero. It will be seen that these
reaction fronts adhere to the scalings of Bazant and Stone (2000), although in this
case the reaction front profiles are also influenced by spatially varying diffusivity and
material expansion during corrosion, through additional advective transport.

We now present a leading-order matched asymptotic description valid for suffi-
ciently large times. As the reaction develops, the first reaction front propagates into
the solid such that its location is

z1(t) =  - LAt
1
2 + \cdot \cdot \cdot ,(4.1)

with LA > 0. This ``parabolic oxidation"" (Ritchie, 1984; McGillivray et al., 1994),
with a square-root time dependence, is observed when the surface oxide layer is not
thick enough to crack or spall, and is a characteristic feature of similar reaction-
diffusion models (Jiang and Ebner, 1990; G\'alfi and R\'acz, 1988; Koza, 1996; Bazant
and Stone, 2000). The surface displacement due to material expansion must also be
of the same form:

zs(t) = Lst
1
2 + \cdot \cdot \cdot .(4.2)

Here Ls > 0, signifying that the direction of propagation of the surface is opposite to
the direction of the propagating reaction fronts.

4.1.1. Layer A: The oxide layer, \bfitalpha \bfthree = 1. In the oxide layer, \alpha 3 = 1 at
leading order, with \alpha 1,2 \ll 1; therefore the reaction terms are negligibly small, leaving
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t

z

z = 0 Layer A: O(t1/2)

Layer B: O(t1/2)

] Front 1: O(t1/6)

] Front 2: O(t1/4)

Bulk

zs(t)

Fig. 4. A schematic of the asymptotic regions in the general case of D
(1)
2 \not = 0. The initial

surface is located at z = 0, but the medium expands as the reactions proceed, with the surface
identified by z = zs(t) > 0 for t > 0. The two reaction fronts are found at z = z1(t) (front 1) and
z = z2(t) (front 2) and are separated by a diffusion layer (layer B) of thickness O(t1/2).

a simple quasi-steady diffusion of the reactants \rho 1,2:

\partial 2\rho 1,2
\partial z2

= 0 .(4.3)

Applying the boundary condition \rho 1 = 1 on z = zs(t) and the asymptotic matching
condition \rho 1 \rightarrow 0 as z \rightarrow z+1 provides

\rho 1 \sim z  - z1(t)

zs(t) - z1(t)
.(4.4)

Similarly, applying the boundary condition \rho 2 = 0 on z = zs(t) gives

\rho 2 \sim \scrA (t)(zs(t) - z)(4.5)

at leading order, where \scrA (t) will be chosen later. Below this simple quasi-steady dif-
fusion layer we find the first reaction front where the term k1\rho 

2
1\alpha 1 becomes important.

4.1.2. Reaction front 1. In this inner region we introduce a scaled and shifted
coordinate

X =
(z  - z1(t))

t\lambda 
,(4.6)

where \lambda is determined below, and the associated asymptotic expansion is

(\rho 1, \rho 2) = (t\lambda  - 
1
2 \=\rho 1(X) + \cdot \cdot \cdot , \gamma + t\lambda  - 

1
2 \=\rho 2(X) + \cdot \cdot \cdot ) ,(4.7a)

(\alpha 1, \alpha 3) = (\=\alpha 1(X) + \cdot \cdot \cdot , 1 - \=\alpha 1(X) + \cdot \cdot \cdot ) ,(4.7b)

with \alpha 2 \ll 1.
The O(t\lambda  - 

1
2 ) behavior of \rho 1 follows from writing the outer solution (4.4) in terms

of the inner variable (4.6). An O(1) concentration of \rho 2 within the first reaction front
is consistent with the numerical results of Figures 2 and 3, and matching with (4.5)
we require

\scrA (t) =
\gamma 

LA + Ls
t - 

1
2 .(4.8)
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The reaction rate k1\rho 
2
1\alpha 1 at leading order remains O(t2\lambda  - 1). So a dominant

balance of the O(t - \lambda  - 1
2 ) diffusion term with the reaction requires \lambda = 1/6, a result

which is consistent with the scalings presented in Bazant and Stone (2000) for the
stoichiometric coefficients associated with the first reaction in (1.5). However, in this
case we also have an additional advection velocity in the reaction front associated
with the material expansion. From (2.6e), the appropriate scaling for this advection
velocity is

v = t - 
1
2 \=v(X) + \cdot \cdot \cdot ,(4.9)

which gives the following governing (leading-order) equations in this first reaction
front:

d

dX

\biggl( 
\=D1

d\=\rho 1
dX

\biggr) 
= 2k1\=\rho 

2
1\=\alpha 1 ,(4.10a)

d

dX

\biggl( 
\=D2

d\=\rho 2
dX

\biggr) 
=  - 5k1\=\rho 

2
1\=\alpha 1 ,(4.10b)

1

2
LA

d\=\alpha 1

dX
+

d(\=v\=\alpha 1)

dX
=  - k1\=\rho 

2
1\=\alpha 1

N\ast 
2

N\ast 
1

,(4.10c)

d\=v

dX
= k1\=\rho 

2
1\=\alpha 1

\biggl( 
N\ast 

2

N\ast 
3

 - N\ast 
2

N\ast 
1

\biggr) 
,(4.10d)

where

\=D1,2 = D
(1)
1,2 \=\alpha 1 +D

(3)
1,2(1 - \=\alpha 1) ,(4.10e)

and (as noted above) D
(3)
1 = 1 by our choice of a reference diffusivity.

This system determines the concentration profiles within the reaction front, sub-
ject to matching with layer A,

d\=\rho 1
dX

\sim 1

Ls + LA
,

d\=\rho 2
dX

\sim  - \gamma 

Ls + LA
, \=\alpha 1 \rightarrow 0 as X \rightarrow \infty ,(4.10f)

and recovery of a hydride layer in layer B, with

\=\rho 1 \rightarrow 0 ,
d\=\rho 2
dX

\sim \mu , \=\alpha 1 \rightarrow 1 as X \rightarrow  - \infty ;(4.10g)

matching conditions for the advection velocity will be considered later. Decay of \=\rho 1
when approaching layer B (the hydride layer) is consistent with the solutions described
in Bazant and Stone (2000), effectively requiring all of the diffusing OH-- to be con-
sumed at this reaction front, which also agrees with the experimental observations of
Martin et al. (2016). In addition, for this coupled reaction we must have a linear (or
constant) behavior for \=\rho 2 in this same limit because the reaction terms are spatially
localized to the reaction front. At this stage the coefficient \mu in (4.10g) is unknown
but will be determined below.

The concentration profiles in this reaction front can be obtained by solving the
system (4.10) numerically, subject to the matching constraints as X \rightarrow \pm \infty . We
present these results later as a check against the full numerical integration of (2.6).
However, to make progress on a complete asymptotic solution, we can simply integrate
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across this reaction front to obtain matching conditions for layer A and layer B. In
particular, from (4.10) we find that\biggl[ 

\=D1
d\=\rho 1
dX

\biggr] +\infty 

 - \infty 
= 2S1 ,

\biggl[ 
\=D2

d\=\rho 2
dX

\biggr] +\infty 

 - \infty 
=  - 5S1 ,(4.11a) \biggl[ 

1

2
LA\=\alpha 1

\biggr] +\infty 

 - \infty 
+
\Bigl[ 
\=v\=\alpha 1

\Bigr] +\infty 

 - \infty 
=  - S1

N\ast 
2

N\ast 
1

,
\Bigl[ 
\=v
\Bigr] +\infty 

 - \infty 
= S1

\biggl( 
N\ast 

2

N\ast 
3

 - N\ast 
2

N\ast 
1

\biggr) 
.(4.11b)

Here S1 is the integral

S1 \equiv k1

\int \infty 

 - \infty 
\=\rho 21\=\alpha 1 dX ,(4.11c)

which is proportional to the (total) sink of diffusing reactant throughout the first
reaction front. The integral remains finite as the reaction rate in the integrand remains
localized within the reaction front.

Using the far-field behavior (see (4.10f) and (4.10g)), and eliminating S1, (4.11)
reduces to

\mu =
1

D
(1)
2

\Biggl( 
5 - 2\gamma D

(3)
2

2(Ls + LA)

\Biggr) 
,(4.12a)

\=v( - \infty ) =
N\ast 

2

N\ast 
1

1

2 (Ls + LA)
 - LA

2
,(4.12b)

\=v(+\infty ) =
N\ast 

2

N\ast 
3

1

2 (Ls + LA)
 - LA

2
.(4.12c)

In this formulation we have retained k1 as a parameter in the reaction front
equations. However, it should be noted that the system can be transformed to take

the same form but with k1 replaced by unity through the substitutions X \rightarrow k
 - 1/3
1 X

and \=\rho 1,2 \rightarrow k
 - 1/3
1 \=\rho 1,2. The value of k1, while influencing the thickness of this reaction

front, has no impact on the matching conditions that arise from (4.12).

4.1.3. Layer B: The hydride layer, \bfitalpha \bfone = 1. The hydride layer is where
\alpha 1 = 1 and exists as an intermediate phase in the reaction scheme (1.5). In this
region there is no significant amount of OH-- and therefore \rho 1 is small.

In reaction front 1 (as described above) the second diffusing reactant (H ) is
generated as a product, with a peak (as yet undetermined) concentration of \gamma in that
region. Owing to the quasi-steady nature of the diffusing reactants, the concentration
of H remains linear in layer B, which (on matching with reaction front 1) results in

\rho 2 = \gamma +
1

D
(1)
2

\Biggl( 
5 - 2\gamma D

(3)
2

2(Ls + LA)

\Biggr) 
(z  - z1)t

 - 1
2 + \cdot \cdot \cdot .(4.13)

The second reaction front is found where \rho 2 = o(1), which occurs at z = z2(t)
where

z2(t) = z1(t) - LBt
1
2 ,(4.14a)

with

LB =
2\gamma (Ls + LA)D

(1)
2

5 - 2\gamma D
(3)
2

.(4.14b)
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At this point we do not know the location of the first reaction front (via the
constant LA), the expanding material surface (Ls), the peak concentration of \rho 2 (\gamma ),
or the location of the second reaction front (LB). However, we can form a closed
system of algebraic equations for all four of these quantities by an analysis of the
second reaction front and matching to this layer B solution.

4.1.4. Reaction front 2. The second reaction front can be approached in the
same manner as the first, with the inner coordinate

Y =
z  - z2

t
1
4

.(4.15)

Here the 1/4 power scaling is arrived at by a dominant balance of the second reaction
in (1.5) with diffusion.

The corresponding asymptotic expansion in this propagating front is

\rho 2 = t - 
1
4 \^\rho 2(Y ) + \cdot \cdot \cdot ,(4.16a)

(\alpha 1, \alpha 2) = (1 - \^\alpha 2(Y ) + \cdot \cdot \cdot , \^\alpha 2(Y ) + \cdot \cdot \cdot ) ,(4.16b)

v = t - 
1
2 \^v(Y ) + \cdot \cdot \cdot ,(4.16c)

as there is no leading-order oxide (UO2) present nor is there any diffusing OH--, and
hence both \alpha 3 and \rho 1 can be neglected.

This leads to the following (leading-order) equations in the second reaction front:

d

dY

\biggl( 
\^D2

d\^\rho 2
dY

\biggr) 
= 3\^\rho 32\^\alpha 2 ,(4.17a)

1

2
(LA + LB)

d\^\alpha 2

dY
+

d(\^v\^\alpha 2)

dY
=  - \^\rho 32\^\alpha 2 ,(4.17b)

d\^v

dY
= \^\rho 32\^\alpha 2

\biggl( 
N\ast 

2

N\ast 
1

 - 1

\biggr) 
,(4.17c)

where

\^D2 = D
(1)
2 (1 - \^\alpha 2) +D

(2)
2 \^\alpha 2 .(4.17d)

This system determines the concentration profiles, subject to matching with layer
B

d\^\rho 2
dY

\sim 1

D
(1)
2

\Biggl( 
5 - 2\gamma D

(3)
2

2(Ls + LA)

\Biggr) 
, \^\alpha 2 \rightarrow 0 , as Y \rightarrow \infty ,(4.18a)

and recovery of an unreacted solid when moving into the bulk of the metal

\^\rho 2 \rightarrow 0 , \^\alpha 2 \rightarrow 1 , as Y \rightarrow  - \infty .(4.18b)

Again we will consider matching conditions for the advection velocity as a final step
below.

We postpone a numerical solution of (4.17) until later and instead note that the
same integrated approach to this reaction front provides\biggl[ 

\^D2
d\^\rho 2
dY

\biggr] +\infty 

 - \infty 
= 3S2 ,

1

2
(LA + LB)

\Bigl[ 
\^\alpha 2

\Bigr] +\infty 

 - \infty 
+
\bigl[ 
\^v\^\alpha 2

\bigr] \infty 
 - \infty =  - S2 ,(4.19a)

\bigl[ 
\^v
\bigr] \infty 
 - \infty = S2

\biggl( 
N\ast 

2

N\ast 
1

 - 1

\biggr) 
,(4.19b)
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2

Fig. 5. Dependence of LA, LB, Ls, and D
(3)
2 \gamma on the ratio of diffusivities D

(1)
2 /D

(3)
2 . Given

LA,B,s, the positions of the two reaction fronts and the expanding surface of the solid are known via
(4.1), (4.14a), and (4.2), respectively. Here these results use N\ast 

1 /N
\ast 
3 \approx 1.12 and N\ast 

2 /N
\ast 
1 \approx 1.76 as

appropriate for the uranium oxidation example.

where S2 is a (finite) integral of the (localized) reaction rate \^\rho 32\^\alpha 2 over the whole
reaction front.

From these depth integrated equations we deduce that

1

2
(LA + LB) =

1

6

\Biggl( 
5 - 2\gamma D

(3)
2

Ls + LA

\Biggr) 
,(4.20a)

\^v(+\infty ) =

\biggl( 
N\ast 

2

N\ast 
1

 - 1

\biggr) \biggl( 
LA + LB

2

\biggr) 
,(4.20b)

as \^v( - \infty ) = 0 in the uncorroded metal.
In this asymptotic description we have four constants: Ls, which determines

the surface position of the expanding solid, LA,B , which locate the first and second
reaction fronts, respectively, and \gamma , which is a measure of H concentration in the
first reaction front. As a final step we require that the advection velocities match
across layer B, that is, \=v( - \infty ) = \^v(+\infty ) in (4.12) and (4.20) (because the advection
is spatially varying only in the reaction fronts while constant in layer B) and using
(4.2) we have \=v(+\infty ) = Ls/2 (as the surface is advected in the expansion process).
From this we find that

N\ast 
2

N\ast 
1

1

(Ls + LA)
 - LA =

\biggl( 
N\ast 

2

N\ast 
1

 - 1

\biggr) 
(LA + LB) ,(4.21a)

N\ast 
2

N\ast 
3

1

(Ls + LA)
 - LA = Ls ,(4.21b)

which together with (4.14b) and (4.20a) closes the algebraic system.
After some algebra, the solution for \gamma (the leading-order concentration of H in
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the first reaction front) reduces to

8D
(3)
2 \gamma = 14 + 6

D
(1)
2

D
(3)
2

N\ast 
1

N\ast 
3

 - 

\left\{   
\Biggl( 
14 + 6

D
(1)
2

D
(3)
2

N\ast 
1

N\ast 
3

\Biggr) 2

 - 160

\right\}   
1
2

,(4.22)

and the solutions for LA, LB , and Ls then follow directly. These three coefficients,
which determine the positions of the two reaction fronts and the material surface,

are only dependent on the ratio D
(1)
2 /D

(3)
2 , for fixed values of N\ast 

i . Furthermore, the
value of k1, which fixes the relative reaction rate constants in (1.5), has no impact
on this leading-order description; it only serves to determine the thickness of the first
reaction front as noted in section 4.1.2.

In terms of the application to uranium corrosion, the values of N\ast 
i are well known

(N\ast 
1 /N

\ast 
3 \approx 1.12 and N\ast 

2 /N
\ast 
1 \approx 1.76), but the diffusivity values for H in UH3 (D

(1)
2 )

and in UO2 (D
(3)
2 ) are much less established. With this in mind, we show in Figure

5 the dependence of these quantities on the diffusivity ratio. Of particular note is

the limit D
(1)
2 /D

(3)
2 \ll 1, where LB \rightarrow 0 and \gamma \rightarrow 1/D

(3)
2 . This indicates that the

thickness of the intermediate (hydride) layer is small in this limit, bringing the two
propagating reaction fronts closer together at any fixed time value.

4.2. A special case: \bfitD 
(\bfone )
\bftwo = 0, \bfitD 

(\bfthree )
\bftwo \not = 0. As D

(1)
2 /D

(3)
2 \rightarrow 0 the structure

of Figure 4 must be modified to account for the fact that LB \rightarrow 0 (the leading-order
thickness of layer B is zero). From (4.10) in reaction front 1, we see that the governing
equation for \=\rho 2 is independent of those for (\=\rho 1, \=\alpha 1, \=v), i.e., the coupling is only one

way for these quantities. Furthermore, the ratio D
(1)
2 /D

(3)
2 only influences \=\rho 2.

From (4.10), applying only the conditions for matching with layer A for \=\rho 2, we
find that

d\=\rho 2
dX

=
1

\=D2(X)

\Biggl\{ 
5 - 2\gamma D

(3)
2

2(Ls + LA)
 - 5k1

\int X

 - \infty 
\=\rho 21( \=X)\=\alpha 1( \=X) d \=X

\Biggr\} 
,(4.23)

where \=D2(X) is as given in (4.10e).

In our previous analysis of the case D
(1)
2 > 0, \=D2( - \infty ) = D

(1)
2 and the gradient of

\=\rho 2 remains finite for large negative values of X. However, when D
(1)
2 = 0, \=D2(X) \ll 1

as X \rightarrow  - \infty , and we have to address the limiting behavior to determine what sets
the thickness of the intermediate (hydride) layer in this case.

As X \rightarrow  - \infty , the asymptotic behavior of reaction front 1, as described by (4.10),
is

\=\rho 1 = aX - 2 + \cdot \cdot \cdot , \=\alpha 1 = 1 + bX - 3 + \cdot \cdot \cdot ,(4.24a)

\=\alpha 3 =  - bX - 3 + \cdot \cdot \cdot , \=v = \=v( - \infty ) - cX - 3 + \cdot \cdot \cdot ,(4.24b)

where the constants a, b, c are all positive and \=v( - \infty ) is again given by (4.12b) since
(\=\rho 1, \=\alpha 1) \rightarrow (0, 1) in this limit (as before). It is straightforward to show that

a =
3D

(1)
1

k1
, b =

6D
(1)2

1 (N\ast 
2 /N

\ast 
3 )

3
2

k1(N\ast 
2 /N

\ast 
1 )

, c =
3D

(1)2

1

k1

\biggl( 
N\ast 

2

N\ast 
3

 - N\ast 
2

N\ast 
1

\biggr) 
,(4.24c)

on writing LA+Ls = (N\ast 
2 /N

\ast 
3 )

1/2, which follows from matching the advection velocity
of the first reaction front with layer A via \=v(+\infty ) =  - Ls/2.
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From the general solution (4.23), using

\=D2(X) \sim D
(3)
2 ( - bX - 3) ,(4.25)

the corresponding behavior for \rho 2 in reaction front 1 is

\rho 2 = \gamma  - 

\left(  3X4

8bD
(3)
2

\biggl( 
N\ast 

3

N\ast 
2

\biggr) 1
2
+O(X)

\right)  t - 
1
3 + \cdot \cdot \cdot ,(4.26)

as X \rightarrow  - \infty . In the previous case \gamma was determined by matching with the second
reaction front, but here we will assume consistency with the previous analysis as

D
(1)
2 \rightarrow 0, giving \gamma = 1/D

(3)
2 .

This expansion for \rho 2 disorders when | X| = O(t1/12) or, in terms of the original
(outer) coordinate, when

z = z2(t) \equiv z1(t) - 

\left(  8b

3

\biggl( 
N\ast 

2

N\ast 
3

\biggr) 1
2

\right)  
1
4

t
1
4 ,(4.27)

which is the (leading-order) location of the second reaction front in this special case.
This now gives us the large-time prediction of the thickness of the intermediate (hy-
dride) layer z1(t) - z2(t).

In the general case (with nonzero D
(1)
2 ) the two reaction fronts are separated by

an O(D
(1)
2 t

1
2 ) diffusion layer. When D

(1)
2 = 0, this separation is reduced to O(t

1
4 k

 - 1
4

1 )
and no intermediate diffusion layer exists in the leading-order description, but the two
reaction fronts stay spatially isolated.

5. A comparison with the full numerical solution. The large-time asymp-
totic behavior described in section 4 is qualitatively consistent with the preliminary
numerical results of section 3; however, we now check the quantitative details. To
begin with, we note that the reaction front solutions to (4.10) and (4.17) are invariant
under the translations of X \rightarrow X +X0 and Y \rightarrow Y + Y0, respectively, for constants
X0, Y0, corresponding to higher-order corrections to the front locations. For compar-
ison of the leading-order predictions with numerical results we are therefore free to
define z1(t) as the position at which the first reaction rate,

\scrR 1(z, t) = k1\rho 
2
1(z, t)\alpha 1(z, t),(5.1)

attains its maximum value. Similarly z2(t) will be chosen such that

\scrR 2(z, t) = \rho 32(z, t)\alpha 2(z, t)(5.2)

is maximized.
The asymptotic predictions are that (zs, z1, z2) \sim (Ls, - LA, - (LA + LB))t

1/2

where the constants Ls, LA, LB are as given in Figure 5. We begin by comparing the
rescaled thickness of layer A, given by (zs  - z1)t

 - 1/2 with the asymptotic prediction
of Ls + LA in Figure 6(a). A similar calculation can be made for the thickness of
layer B by comparing (z1  - z2)t

 - 1/2 with LB , as shown in Figure 6(b). From the
asymptotic results of section 4 we know that the value of k1 does not affect the t \gg 1

leading-order predictions, but the value of D
(1)
2 does affect the value of LB (as shown
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Fig. 6. A comparison of rescaled time-marched numerical solutions to (2.6) (solid lines) with
the large-time asymptotic predictions (dashed lines). The dashed line represents (a) LA + Ls and
(b) LB. This confirms that the predicted sizes of the diffusion layers A and B agree with the full
numerical solution for large times.

in Figure 5). Figure 6 demonstrates agreement between the full numerical solution
and the predicted behavior for sufficiently large values of t for a range of parameter
values.

Within the reaction fronts themselves, we can compare numerical solutions with
the leading-order asymptotic profiles obtained from solution of (4.10) and (4.17). To
achieve this we take the numerical data and present it as a function of the reaction
front coordinates X = (z  - z1)t

 - 1/6 and Y = (z  - z2)t
 - 1/4. Comparisons are then

made with (\=\alpha 1, \=v1, \=\scrR 1) in Figure 7(b) for reaction front 1, and (\^\alpha 2, \^v2, \^\scrR 2) in Figure
7(a) for reaction front 2. Here \=\scrR 1 is the equivalent expression to \scrR 1 but using \=\rho 1
and \=\alpha 1; a similar situation holds for \^\scrR 2. Again, there is good agreement between
the predicted asymptotic behavior and the numerical solution of (2.6) obtained at
t = 104.

Finally, in Figure 8 we show the evolution of z1  - z2 (the thickness of layer B) as

a function of time for D
(1)
2 = 1, 0.1, 0, with all other values of D

(j)
i set to unity. The

figure also shows the asymptotic predictions: z1 - z2 = LBt
1/2 (valid for D

(1)
2 = 1, 0.1)

where LB as a function of D
(1)
2 is as shown in Figure 5. In the case of D

(1)
2 = 0,

we know that LB = 0 and the modified structure presented in section 4.2 is the
appropriate comparison to make for large times, using (4.27). This transition from a

layer B thickness of O(t1/2) to a thinner O(t1/4) layer as the diffusion coefficient D
(1)
2

is reduced to zero is seen to be consistent with the full numerical data.

6. Discussion. For the first time, we have developed a mechanistic (reaction-
advection-diffusion) model of uranium oxidation in a water-vapor environment. The
model is underpinned by a pair of (proposed) reactions that aim to describe uranium
corrosion. The model includes advective transport associated with expansion of the
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Fig. 7. A comparison of rescaled time-marched numerical solutions to (2.6) (data points) with
leading-order asymptotic solutions (solid lines) within (a) reaction front 2 and (b) reaction front 1

for the case of k1 = 10, D
(j)
i = 1 for all i, j. The reaction front asymptotic solutions are determined

by solution of (a) (4.17) and (b) (4.10), and the numerical solution is shown for t = 104. This
confirms that the predictions for the reaction fronts are consistent with the numerical solution of the
full problem at large times.

material during the corrosion process, variable diffusion coefficients, and third/fourth-
order reaction kinetics. The (large-time) asymptotic solution (in the general case)
reduces to four main regions, comprising two diffusion layers and two reaction fronts.
Matching across all four regions not only provides analytical expressions for the overall
structure of the material response but also indicates key parameter dependencies.

The locations of the oxide/hydride layers (in the large-time limit) are dominated

by the parameter ratio D
(1)
2 /D

(3)
2 , as shown in Figure 5. This is equivalent to the

corresponding ratio of dimensional values, representing a relative measure of the dif-
fusivity of H in UH3 relative to UO2. H and UH3 are both produced and consumed
in the two-step reaction (1.5), with H arising as a product in reaction front 1 (by con-
sumption of UH3) and UH3 arising as a product in reaction front 2 (by consumption
of H ).

Although the individual values of Ls,A,B depend on D
(1)
2 /D

(3)
2 , the combination

that determines the oxide thickness is Ls + LA = (N\ast 
2 /N

\ast 
3 )

1/2, which follows from
(4.21b). This allows us to predict the (dimensional) oxide thickness to be

\Delta \ast 
oxide \sim 

\biggl( 
D\ast 

ref

C\ast 

N\ast 
3

t\ast 
\biggr) 1/2

,(6.1)

at leading order, where D\ast 
ref is a reference diffusivity (herein chosen as D

(3)\ast 
1 , the

diffusion coefficient of OH-- in UO2) and C\ast is the concentration of OH-- at the surface
of the material.

Of particular interest is the thickness of layer B (Figures 1 and 4), which is an
intermediate (hydride) layer as observed for the first time in the recent experimental
work of Martin et al. (2016). The dimensionless thickness of this layer is LBt

1/2 at

leading order, where (as noted above) LB is determined as a function of D
(1)
2 /D

(3)
2
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Fig. 8. A comparison of the thickness of layer B, as obtained from time-marched numerical
solutions to (2.6) (solid lines) with leading-order (t \gg 1) asymptotic solutions (dashed lines) for the

cases of k1 = 100, D
(1)
2 = 1, 0.1, 0 (other values of D

(j)
i are set to unity). For D

(1)
2 = 1 and 0.1

the value LB is determined as shown in Figure 5, while for D
(1)
2 = 0 the comparison in made with

(4.27). This confirms the asymptotic predictions for the thickness of the intermediate layer B.

(Figure 5). Based on the experimental data of Peretz et al. (1976), we expect the
diffusivity of H in UH3 to be substantially smaller than the reference diffusivity (by
approximately three orders of magnitude) at room temperature. This suggests that

the relevant practical limit is D
(1)
2 \ll D

(3)
2 , for which

LB \sim 2

3

\biggl( 
N\ast 

2

N\ast 
3

\biggr) 1/2
D

(1)
2

D
(3)
2

.(6.2)

When this is cast into dimensional terms, we conclude that the large-time thickness
of the intermediate (hydride) layer is

\Delta \ast 
hydride \sim 

2

3

D
(1)
2

D
(3)
2

\Delta \ast 
oxide(6.3)

in the small diffusivity limit of 0 < D
(1)
2 /D

(3)
2 \ll 1. Hence, this reaction-diffusion

model offers a mechanism for the sustained, propagating, hydride layer of Martin
et al. (2016), and its relatively small thickness (compared to the length scale of the
oxide layer) is shown to be a consequence of weak diffusivity within the hydride layer
of the produced H .

Given that our expectation is for D
(1)
2 to be small, our asymptotic results also

explicitly address the case of D
(1)
2 = 0. In this case the hydride layer (dimensionless)

thickness reduces further to O(k
 - 1/4
1 t1/4), where k1 = k\ast 1N

\ast 
1 /(k

\ast 
2N

\ast 
2C

\ast ).
In our analysis, the local diffusion coefficient was assumed to be a linear weighted
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combination of the constituent static components, e.g.,

D1,2(z, t) = D
(1)
1,2 \alpha 1(z, t) +D

(2)
1,2 \alpha 2(z, t) +D

(3)
1,2 \alpha 3(z, t)(6.4)

for constants D
(j)
i . This approach has also been taken by (for example) Polanowski

and Koza (2006); however, it should be noted that any other more complex functional
dependence of D1,2 on \alpha 1,2,3 will only influence the details of the solutions within the
reaction fronts (i.e., Figure 7). The large-time conclusions for the thickness of the

oxide/hydride layers (when D
(1)
2 > 0) are independent of this choice because one

integrates over the reaction fronts to obtain the large-time matching conditions, and

these integrated conditions only depend on D
(j)
i rather than on the precise functional

form within the fronts. For the case D
(1)
2 = 0, the O(t1/4) intermediate layer predicted

in section 4.2 would be found for any functional dependence that satisfies \=D2 \sim \=\alpha 3

when \=\alpha 3 \ll 1 within the first reaction front.
A more quantitative comparison with oxide thickness (or mass gain) would be

possible with some fitting of parameters, but care must be taken for the oxide to
be adherent in experimental work. Any cracking or spalling near the surface will
almost certainly lead to faster than t1/2 growth of the oxide layer. For quantitative
application of these asymptotic (rather than computational) results, we require a large
time (made dimensionless via the reaction timescale), but not so large that break-up
of the oxide layer has occurred. A separate analysis (in preparation) is required for
the later cracked/spalled-oxide regime, with preliminary results indicating that the
subsurface hydride layer ceases to thicken further as the oxidation rate approaches a
constant.

Appendix A. Numerical formulation. We apply a Howarth--Dorodnitsyn
transformation to (2.6), which fixes the moving surface caused by expansion of the ma-
terial during the reaction process. To achieve this we introduce a material coordinate
\zeta defined as

\zeta =

\int z

 - z\infty 

\varrho dz \in [0, \zeta s] .(A.1)

Here z\infty is a (fixed) domain truncation chosen to be sufficiently large to encompass
both reaction fronts over the entire timescale of the computation. The quantity \varrho is
chosen to be

\varrho = \alpha 1
N\ast 

1

N\ast 
2

+ \alpha 2 + \alpha 3
N\ast 

3

N\ast 
2

.(A.2)

Hence \zeta s, which is computational domain size in the transformed problem, corresponds
to the total number of U atoms in the truncated domain (per unit area), and this
value is a constant.

The transformation leads to

\partial 

\partial z
\rightarrow \varrho 

\partial 

\partial \zeta 
,

\partial 

\partial t
\rightarrow \partial 

\partial t
 - \varrho v

\partial 

\partial \zeta 
,(A.3)

and the governing equations in the (\zeta , t) framework, with \epsilon = 0, are

0 = \varrho 
\partial 

\partial \zeta 

\biggl( 
D1,2 \varrho 

\partial \rho 1,2
\partial \zeta 

\biggr) 
+ r1,2 ,

\partial (\alpha 1,2,3)

\partial t
+ \varrho 

\partial v

\partial \zeta 
\alpha 1,2,3 = R1,2,3 .

(A.4)D
ow

nl
oa

de
d 

12
/2

6/
22

 to
 1

30
.8

8.
16

.1
57

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



© 2020 UK Ministry of Defence Crown Owned Copyright 2020/AWE

ASYMPTOTICS OF COUPLED REACTION FRONTS 2269

The reaction rate densities (ri, Rj) are given by (2.3), and \varrho v\zeta is given by the right-
hand side of (2.6e).

To kickstart the reaction we need an initial quantity of either \alpha 1 or \rho 2, so we
start from an initial condition that can be thought of as a slightly preoxidized state:

\alpha 2(\zeta , 0) =
1

2
(1 - tanh(\zeta  - (\zeta s  - \delta 2))) , \alpha 3(\zeta , 0) =

1

2
(1 + tanh(\zeta  - (\zeta s  - \delta 3))) ,

\alpha 1(\zeta , 0) = 1 - \alpha 2(\zeta , 0) - \alpha 3(\zeta , 0)(A.5)

in the region \zeta \in [0, \zeta s] with \delta 2 = 5 and \delta 3 = 4. The precise choice of condition,
provided that the reaction is started, does not affect the leading-order large-time
behavior. The numerical results are easily cast back into the (z, t) framework once
the solution has been determined.

Acknowledgments. The authors benefited from a number of discussions with
J. Petherbridge and R. Harker (AWE), while the reaction scheme (1.5) was originally
proposed by J. Glascott and I. Findlay (AWE).
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